Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Den här migreringsguiden visar hur du migrerar från FunctionCallingStepwisePlanner
till en ny rekommenderad metod för planeringsfunktion – autofunktionssamtal. Den nya metoden ger resultatet mer tillförlitligt och använder färre token jämfört med FunctionCallingStepwisePlanner
.
Planera generering
Följande kod visar hur du genererar en ny plan med autofunktionsanrop med hjälp FunctionChoiceBehavior = FunctionChoiceBehavior.Auto()
av . När du har skickat en begäran till AI-modellen finns planen i ChatHistory
ett objekt där ett meddelande med Assistant
rollen innehåller en lista över funktioner (steg) att anropa.
Gammal metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
FunctionCallingStepwisePlanner planner = new();
FunctionCallingStepwisePlannerResult result = await planner.ExecuteAsync(kernel, "Check current UTC time and return current weather in Boston city.");
ChatHistory generatedPlan = result.ChatHistory;
Ny metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
IChatCompletionService chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
ChatHistory chatHistory = [];
chatHistory.AddUserMessage("Check current UTC time and return current weather in Boston city.");
OpenAIPromptExecutionSettings executionSettings = new() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() };
await chatCompletionService.GetChatMessageContentAsync(chatHistory, executionSettings, kernel);
ChatHistory generatedPlan = chatHistory;
Körning av den nya planen
Följande kod visar hur du kör en ny plan med autofunktionsanrop med hjälp FunctionChoiceBehavior = FunctionChoiceBehavior.Auto()
av . Den här metoden är användbar när endast resultat behövs utan plansteg. I det här fallet Kernel
kan objektet användas för att skicka ett mål till InvokePromptAsync
en metod. Resultatet av plankörningen finns i FunctionResult
objektet.
Gammal metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
FunctionCallingStepwisePlanner planner = new();
FunctionCallingStepwisePlannerResult result = await planner.ExecuteAsync(kernel, "Check current UTC time and return current weather in Boston city.");
string planResult = result.FinalAnswer;
Ny metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
OpenAIPromptExecutionSettings executionSettings = new() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() };
FunctionResult result = await kernel.InvokePromptAsync("Check current UTC time and return current weather in Boston city.", new(executionSettings));
string planResult = result.ToString();
Körning av den befintliga planen
Följande kod visar hur du kör en befintlig plan med autofunktionsanrop med hjälp FunctionChoiceBehavior = FunctionChoiceBehavior.Auto()
av . Den här metoden är användbar när ChatHistory
den redan finns (t.ex. lagras i cacheminnet) och den ska köras igen och slutresultatet ska tillhandahållas av AI-modellen.
Gammal metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
FunctionCallingStepwisePlanner planner = new();
ChatHistory existingPlan = GetExistingPlan(); // plan can be stored in database or cache for reusability.
FunctionCallingStepwisePlannerResult result = await planner.ExecuteAsync(kernel, "Check current UTC time and return current weather in Boston city.", existingPlan);
string planResult = result.FinalAnswer;
Ny metod:
Kernel kernel = Kernel
.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", Environment.GetEnvironmentVariable("OpenAI__ApiKey"))
.Build();
IChatCompletionService chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
ChatHistory existingPlan = GetExistingPlan(); // plan can be stored in database or cache for reusability.
OpenAIPromptExecutionSettings executionSettings = new() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() };
ChatMessageContent result = await chatCompletionService.GetChatMessageContentAsync(existingPlan, executionSettings, kernel);
string planResult = result.Content;
Följande kod visar hur du genererar en ny plan med hjälp av funktionen Auto Function Calling med function_choice_behavior = FunctionChoiceBehavior.Auto()
. När du har skickat en begäran till AI-modellen finns planen i ChatHistory
ett objekt där ett meddelande med Assistant
rollen innehåller en lista över funktioner (steg) att anropa.
Gammal metod:
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.planners.function_calling_stepwise_planner import (
FunctionCallingStepwisePlanner,
FunctionCallingStepwisePlannerResult,
)
kernel = Kernel()
kernel.add_service(AzureChatCompletion())
# Add any plugins to the kernel that the planner will leverage
kernel.add_plugins(...)
planner = FunctionCallingStepwisePlanner(service_id="service_id")
result: FunctionCallingStepwisePlannerResult = await planner.invoke(
kernel=kernel,
question="Check current UTC time and return current weather in Boston city.",
)
generated_plan = result.chat_history
Ny metod:
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, AzureChatPromptExecutionSettings
from semantic_kernel.contents import ChatHistory
chat_completion_service = AzureChatCompletion()
chat_history = ChatHistory()
chat_hitory.add_user_message("Check current UTC time and return current weather in Boston city.")
request_settings = AzureChatPromptExecutionSettings(function_choice_behavior=FunctionChoiceBehavior.Auto())
# Add any plugins to the kernel that the planner will leverage
kernel = Kernel()
kernel.add_plugins(...)
response = await chat_completion_service.get_chat_message_content(
chat_history=chat_history,
settings=request_settings,
kernel=kernel,
)
print(response)
# The generated plan is now contained inside of `chat_history`.
Körning av den nya planen
Följande kod visar hur du kör en ny plan med autofunktionsanrop med hjälp function_choice_behavior = FunctionChoiceBehavior.Auto()
av . Den här metoden är användbar när endast resultatet behövs utan plansteg. I det här fallet kan objektet Kernel
användas för att skicka ett mål till metoden invoke_prompt
. Resultatet av utförandet av planen kommer att finnas i ett FunctionResult
-objekt.
Gammal metod:
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.planners.function_calling_stepwise_planner import (
FunctionCallingStepwisePlanner,
FunctionCallingStepwisePlannerResult,
)
kernel = Kernel()
kernel.add_service(AzureChatCompletion())
# Add any plugins to the kernel that the planner will leverage
kernel.add_plugins(...)
planner = FunctionCallingStepwisePlanner(service_id="service_id")
result: FunctionCallingStepwisePlannerResult = await planner.invoke(
kernel=kernel,
question="Check current UTC time and return current weather in Boston city.",
)
print(result.final_answer)
Ny metod:
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, AzureChatPromptExecutionSettings
from semantic_kernel.contents import ChatHistory
from semantic_kernel.functions import KernelArguments
kernel = Kernel()
kernel.add_service(AzureChatCompletion())
# Add any plugins to the kernel that the planner will leverage
kernel.add_plugins(...)
chat_history = ChatHistory()
chat_hitory.add_user_message("Check current UTC time and return current weather in Boston city.")
request_settings = AzureChatPromptExecutionSettings(function_choice_behavior=FunctionChoiceBehavior.Auto())
response = await kernel.invoke_prompt(
"Check current UTC time and return current weather in Boston city.",
arguments=KernelArguments(settings=request_settings),
)
print(response)
Planners var inte tillgängliga i SK Java. Använd funktionsanrop direkt.
Kodfragmenten ovan visar hur du migrerar din kod som använder Stepwise Planner för att använda autofunktionsanrop. Läs mer om funktionssamtal med chatten slutförd.