กิจกรรม
17 มี.ค. 21 - 21 มี.ค. 10
แอปอัจฉริยะ เข้าร่วมชุด meetup เพื่อสร้างโซลูชัน AI ที่ปรับขนาดได้ตามกรณีการใช้งานจริงกับนักพัฒนาและผู้เชี่ยวชาญร่วมกัน
ลงทะเบียนตอนนี้เบราว์เซอร์นี้ไม่ได้รับการสนับสนุนอีกต่อไป
อัปเกรดเป็น Microsoft Edge เพื่อใช้ประโยชน์จากคุณลักษณะล่าสุด เช่น การอัปเดตความปลอดภัยและการสนับสนุนด้านเทคนิค
Azure Kubernetes Service (AKS) is a managed Kubernetes service that lets you quickly deploy and manage clusters. In this quickstart, you:
An Azure Resource Manager template is a JavaScript Object Notation (JSON) file that defines the infrastructure and configuration for your project. The template uses declarative syntax. You describe your intended deployment without writing the sequence of programming commands to create the deployment.
หมายเหตุ
To get started with quickly provisioning an AKS cluster, this article includes steps to deploy a cluster with default settings for evaluation purposes only. Before deploying a production-ready cluster, we recommend that you familiarize yourself with our baseline reference architecture to consider how it aligns with your business requirements.
This article assumes a basic understanding of Kubernetes concepts. For more information, see Kubernetes core concepts for Azure Kubernetes Service (AKS).
If you don't have an Azure subscription, create an Azure free account before you begin.
Make sure that the identity you use to create your cluster has the appropriate minimum permissions. For more details on access and identity for AKS, see Access and identity options for Azure Kubernetes Service (AKS).
To deploy an ARM template, you need write access on the resources you're deploying and access to all operations on the Microsoft.Resources/deployments
resource type. For example, to deploy a virtual machine, you need Microsoft.Compute/virtualMachines/write
and Microsoft.Resources/deployments/*
permissions. For a list of roles and permissions, see Azure built-in roles.
After you deploy the cluster from the template, you can use either Azure CLI or Azure PowerShell to connect to the cluster and deploy the sample application.
Use the Bash environment in Azure Cloud Shell. For more information, see Quickstart for Bash in Azure Cloud Shell.
If you prefer to run CLI reference commands locally, install the Azure CLI. If you're running on Windows or macOS, consider running Azure CLI in a Docker container. For more information, see How to run the Azure CLI in a Docker container.
If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish the authentication process, follow the steps displayed in your terminal. For other sign-in options, see Sign in with the Azure CLI.
When you're prompted, install the Azure CLI extension on first use. For more information about extensions, see Use extensions with the Azure CLI.
Run az version to find the version and dependent libraries that are installed. To upgrade to the latest version, run az upgrade.
This article requires Azure CLI version 2.0.64 or later. If you're using Azure Cloud Shell, the latest version is already installed there.
To create an AKS cluster using an ARM template, you provide an SSH public key. If you need this resource, follow the steps in this section. Otherwise, skip to the Review the template section.
To access AKS nodes, you connect using an SSH key pair (public and private). To create an SSH key pair:
Go to https://shell.azure.com to open Cloud Shell in your browser.
Create an SSH key pair using the az sshkey create command or the ssh-keygen
command.
# Create an SSH key pair using Azure CLI
az sshkey create --name "mySSHKey" --resource-group "myResourceGroup"
# or
# Create an SSH key pair using ssh-keygen
ssh-keygen -t rsa -b 4096
To deploy the template, you must provide the public key from the SSH pair. To retrieve the public key, call az sshkey show:
az sshkey show --name "mySSHKey" --resource-group "myResourceGroup" --query "publicKey"
By default, the SSH key files are created in the ~/.ssh directory. Running the az sshkey create
or ssh-keygen
command will overwrite any existing SSH key pair with the same name.
For more information about creating SSH keys, see Create and manage SSH keys for authentication in Azure.
The template used in this quickstart is from Azure Quickstart Templates.
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {
"_generator": {
"name": "bicep",
"version": "0.26.170.59819",
"templateHash": "14823542069333410776"
}
},
"parameters": {
"clusterName": {
"type": "string",
"defaultValue": "aks101cluster",
"metadata": {
"description": "The name of the Managed Cluster resource."
}
},
"location": {
"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {
"description": "The location of the Managed Cluster resource."
}
},
"dnsPrefix": {
"type": "string",
"metadata": {
"description": "Optional DNS prefix to use with hosted Kubernetes API server FQDN."
}
},
"osDiskSizeGB": {
"type": "int",
"defaultValue": 0,
"minValue": 0,
"maxValue": 1023,
"metadata": {
"description": "Disk size (in GB) to provision for each of the agent pool nodes. This value ranges from 0 to 1023. Specifying 0 will apply the default disk size for that agentVMSize."
}
},
"agentCount": {
"type": "int",
"defaultValue": 3,
"minValue": 1,
"maxValue": 50,
"metadata": {
"description": "The number of nodes for the cluster."
}
},
"agentVMSize": {
"type": "string",
"defaultValue": "standard_d2s_v3",
"metadata": {
"description": "The size of the Virtual Machine."
}
},
"linuxAdminUsername": {
"type": "string",
"metadata": {
"description": "User name for the Linux Virtual Machines."
}
},
"sshRSAPublicKey": {
"type": "string",
"metadata": {
"description": "Configure all linux machines with the SSH RSA public key string. Your key should include three parts, for example 'ssh-rsa AAAAB...snip...UcyupgH azureuser@linuxvm'"
}
}
},
"resources": [
{
"type": "Microsoft.ContainerService/managedClusters",
"apiVersion": "2024-02-01",
"name": "[parameters('clusterName')]",
"location": "[parameters('location')]",
"identity": {
"type": "SystemAssigned"
},
"properties": {
"dnsPrefix": "[parameters('dnsPrefix')]",
"agentPoolProfiles": [
{
"name": "agentpool",
"osDiskSizeGB": "[parameters('osDiskSizeGB')]",
"count": "[parameters('agentCount')]",
"vmSize": "[parameters('agentVMSize')]",
"osType": "Linux",
"mode": "System"
}
],
"linuxProfile": {
"adminUsername": "[parameters('linuxAdminUsername')]",
"ssh": {
"publicKeys": [
{
"keyData": "[parameters('sshRSAPublicKey')]"
}
]
}
}
}
}
],
"outputs": {
"controlPlaneFQDN": {
"type": "string",
"value": "[reference(resourceId('Microsoft.ContainerService/managedClusters', parameters('clusterName')), '2024-02-01').fqdn]"
}
}
}
The resource type defined in the ARM template is Microsoft.ContainerService/managedClusters.
For more AKS samples, see the AKS quickstart templates site.
Select Deploy to Azure to sign in and open a template.
On the Basics page, leave the default values for the OS Disk Size GB, Agent Count, Agent VM Size, and OS Type, and configure the following template parameters:
Select Review + Create > Create.
It takes a few minutes to create the AKS cluster. Wait for the cluster to be successfully deployed before you move on to the next step.
To manage a Kubernetes cluster, use the Kubernetes command-line client, kubectl.
If you use Azure Cloud Shell, kubectl
is already installed. To install and run kubectl
locally, call the az aks install-cli command.
Configure kubectl
to connect to your Kubernetes cluster using the az aks get-credentials command. This command downloads credentials and configures the Kubernetes CLI to use them.
az aks get-credentials --resource-group myResourceGroup --name myAKSCluster
Verify the connection to your cluster using the kubectl get command. This command returns a list of the cluster nodes.
kubectl get nodes
The following example output shows the three nodes created in the previous steps. Make sure the node status is Ready.
NAME STATUS ROLES AGE VERSION
aks-agentpool-27442051-vmss000000 Ready agent 10m v1.27.7
aks-agentpool-27442051-vmss000001 Ready agent 10m v1.27.7
aks-agentpool-27442051-vmss000002 Ready agent 11m v1.27.7
To deploy the application, you use a manifest file to create all the objects required to run the AKS Store application. A Kubernetes manifest file defines a cluster's desired state, such as which container images to run. The manifest includes the following Kubernetes deployments and services:
หมายเหตุ
We don't recommend running stateful containers, such as Rabbit MQ, without persistent storage for production. These are used here for simplicity, but we recommend using managed services, such as Azure CosmosDB or Azure Service Bus.
Create a file named aks-store-quickstart.yaml
and copy in the following manifest:
apiVersion: apps/v1
kind: Deployment
metadata:
name: rabbitmq
spec:
replicas: 1
selector:
matchLabels:
app: rabbitmq
template:
metadata:
labels:
app: rabbitmq
spec:
nodeSelector:
"kubernetes.io/os": linux
containers:
- name: rabbitmq
image: mcr.microsoft.com/mirror/docker/library/rabbitmq:3.10-management-alpine
ports:
- containerPort: 5672
name: rabbitmq-amqp
- containerPort: 15672
name: rabbitmq-http
env:
- name: RABBITMQ_DEFAULT_USER
value: "username"
- name: RABBITMQ_DEFAULT_PASS
value: "password"
resources:
requests:
cpu: 10m
memory: 128Mi
limits:
cpu: 250m
memory: 256Mi
volumeMounts:
- name: rabbitmq-enabled-plugins
mountPath: /etc/rabbitmq/enabled_plugins
subPath: enabled_plugins
volumes:
- name: rabbitmq-enabled-plugins
configMap:
name: rabbitmq-enabled-plugins
items:
- key: rabbitmq_enabled_plugins
path: enabled_plugins
---
apiVersion: v1
data:
rabbitmq_enabled_plugins: |
[rabbitmq_management,rabbitmq_prometheus,rabbitmq_amqp1_0].
kind: ConfigMap
metadata:
name: rabbitmq-enabled-plugins
---
apiVersion: v1
kind: Service
metadata:
name: rabbitmq
spec:
selector:
app: rabbitmq
ports:
- name: rabbitmq-amqp
port: 5672
targetPort: 5672
- name: rabbitmq-http
port: 15672
targetPort: 15672
type: ClusterIP
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: order-service
spec:
replicas: 1
selector:
matchLabels:
app: order-service
template:
metadata:
labels:
app: order-service
spec:
nodeSelector:
"kubernetes.io/os": linux
containers:
- name: order-service
image: ghcr.io/azure-samples/aks-store-demo/order-service:latest
ports:
- containerPort: 3000
env:
- name: ORDER_QUEUE_HOSTNAME
value: "rabbitmq"
- name: ORDER_QUEUE_PORT
value: "5672"
- name: ORDER_QUEUE_USERNAME
value: "username"
- name: ORDER_QUEUE_PASSWORD
value: "password"
- name: ORDER_QUEUE_NAME
value: "orders"
- name: FASTIFY_ADDRESS
value: "0.0.0.0"
resources:
requests:
cpu: 1m
memory: 50Mi
limits:
cpu: 75m
memory: 128Mi
initContainers:
- name: wait-for-rabbitmq
image: busybox
command: ['sh', '-c', 'until nc -zv rabbitmq 5672; do echo waiting for rabbitmq; sleep 2; done;']
resources:
requests:
cpu: 1m
memory: 50Mi
limits:
cpu: 75m
memory: 128Mi
---
apiVersion: v1
kind: Service
metadata:
name: order-service
spec:
type: ClusterIP
ports:
- name: http
port: 3000
targetPort: 3000
selector:
app: order-service
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: product-service
spec:
replicas: 1
selector:
matchLabels:
app: product-service
template:
metadata:
labels:
app: product-service
spec:
nodeSelector:
"kubernetes.io/os": linux
containers:
- name: product-service
image: ghcr.io/azure-samples/aks-store-demo/product-service:latest
ports:
- containerPort: 3002
resources:
requests:
cpu: 1m
memory: 1Mi
limits:
cpu: 1m
memory: 7Mi
---
apiVersion: v1
kind: Service
metadata:
name: product-service
spec:
type: ClusterIP
ports:
- name: http
port: 3002
targetPort: 3002
selector:
app: product-service
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: store-front
spec:
replicas: 1
selector:
matchLabels:
app: store-front
template:
metadata:
labels:
app: store-front
spec:
nodeSelector:
"kubernetes.io/os": linux
containers:
- name: store-front
image: ghcr.io/azure-samples/aks-store-demo/store-front:latest
ports:
- containerPort: 8080
name: store-front
env:
- name: VUE_APP_ORDER_SERVICE_URL
value: "http://order-service:3000/"
- name: VUE_APP_PRODUCT_SERVICE_URL
value: "http://product-service:3002/"
resources:
requests:
cpu: 1m
memory: 200Mi
limits:
cpu: 1000m
memory: 512Mi
---
apiVersion: v1
kind: Service
metadata:
name: store-front
spec:
ports:
- port: 80
targetPort: 8080
selector:
app: store-front
type: LoadBalancer
For a breakdown of YAML manifest files, see Deployments and YAML manifests.
If you create and save the YAML file locally, then you can upload the manifest file to your default directory in CloudShell by selecting the Upload/Download files button and selecting the file from your local file system.
Deploy the application using the kubectl apply command and specify the name of your YAML manifest.
kubectl apply -f aks-store-quickstart.yaml
The following example output shows the deployments and services:
deployment.apps/rabbitmq created
service/rabbitmq created
deployment.apps/order-service created
service/order-service created
deployment.apps/product-service created
service/product-service created
deployment.apps/store-front created
service/store-front created
Check the status of the deployed pods using the kubectl get pods command. Make all pods are Running
before proceeding.
kubectl get pods
Check for a public IP address for the store-front application. Monitor progress using the kubectl get service command with the --watch
argument.
kubectl get service store-front --watch
The EXTERNAL-IP output for the store-front
service initially shows as pending:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
store-front LoadBalancer 10.0.100.10 <pending> 80:30025/TCP 4h4m
Once the EXTERNAL-IP address changes from pending to an actual public IP address, use CTRL-C
to stop the kubectl
watch process.
The following example output shows a valid public IP address assigned to the service:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
store-front LoadBalancer 10.0.100.10 20.62.159.19 80:30025/TCP 4h5m
Open a web browser to the external IP address of your service to see the Azure Store app in action.
If you don't plan on going through the AKS tutorial, clean up unnecessary resources to avoid Azure charges.
Remove the resource group, container service, and all related resources by calling the az group delete command.
az group delete --name myResourceGroup --yes --no-wait
หมายเหตุ
The AKS cluster was created with a system-assigned managed identity, which is the default identity option used in this quickstart. The platform manages this identity so you don't need to manually remove it.
In this quickstart, you deployed a Kubernetes cluster and then deployed a simple multi-container application to it. This sample application is for demo purposes only and doesn't represent all the best practices for Kubernetes applications. For guidance on creating full solutions with AKS for production, see AKS solution guidance.
To learn more about AKS and walk through a complete code-to-deployment example, continue to the Kubernetes cluster tutorial.
คำติชม Azure Kubernetes Service
Azure Kubernetes Service เป็นโครงการโอเพนซอร์ส เลือกลิงก์เพื่อให้คำติชม:
กิจกรรม
17 มี.ค. 21 - 21 มี.ค. 10
แอปอัจฉริยะ เข้าร่วมชุด meetup เพื่อสร้างโซลูชัน AI ที่ปรับขนาดได้ตามกรณีการใช้งานจริงกับนักพัฒนาและผู้เชี่ยวชาญร่วมกัน
ลงทะเบียนตอนนี้การฝึกอบรม
โมดูล
ปรับใช้คลัสเตอร์บริการ Azure Kubernetes - Training
โมดูลนี้ครอบคลุมถึงการปรับใช้คลัสเตอร์ Kubernetes ที่มีการจัดการใน Azure โดยใช้ Azure Kubernetes Service (AKS)
ใบรับรอง
รับรองโดย Microsoft: Azure Administrator Associate - Certifications
แสดงให้เห็นถึงทักษะสําคัญในการกําหนดค่า จัดการ รักษาความปลอดภัย และดูแลฟังก์ชันระดับมืออาชีพที่สําคัญใน Microsoft Azure