หมายเหตุ
การเข้าถึงหน้านี้ต้องได้รับการอนุญาต คุณสามารถลอง ลงชื่อเข้าใช้หรือเปลี่ยนไดเรกทอรีได้
การเข้าถึงหน้านี้ต้องได้รับการอนุญาต คุณสามารถลองเปลี่ยนไดเรกทอรีได้
This section describes monitoring and observability features for Lakeflow Spark Declarative Pipelines.
| Topic | Description |
|---|---|
| Monitor using the UI | Observe the progress and status of pipeline updates, and alert on the success or failure. View metrics for streaming sources, like Apache Kafka and Auto Loader. |
| Event log | Extract detailed information on pipeline updates such as data lineage, data quality metrics, and resource usage using the pipeline event log. Additionally, see the schema for the event log. |
| Query history | Inspect and diagnose query performance by looking at the query history. |
| Custom monitoring | Define custom actions to take when specific events occur using event hooks. |
Additionally, there are troubleshooting topics for specific scenarios.
| Topic | Description |
|---|---|
| Recover a pipeline from streaming checkpoint failure | Recover a pipeline that has an invalid or corrupted streaming checkpoint. |
| Fixing high initialization times in pipelines | Fix high initialization times for a pipeline by splitting and load balancing flows across pipelines. |