Aracılığıyla paylaş


Kapsayıcı içgörülerinden günlükleri sorgulama

Kapsayıcı içgörüleri, kapsayıcı konaklarından ve kapsayıcılardan performans ölçümleri, envanter verileri ve sistem durumu bilgilerini toplar. Veriler her üç dakikada bir toplanır ve Azure İzleyici'de Log Analytics kullanılarak günlük sorguları için kullanılabilir olduğu Azure İzleyici'deki Log Analytics çalışma alanına iletilir.

Bu verileri geçiş planlaması, kapasite analizi, bulma ve isteğe bağlı performans sorunlarını giderme gibi senaryolara uygulayabilirsiniz. Azure İzleyici Günlükleri eğilimleri bulmanıza, performans sorunlarını tanılamanıza, tahmin yapmanıza veya geçerli küme yapılandırmasının en iyi şekilde çalışıp çalışmadığını belirlemenize yardımcı olabilecek verileri ilişkilendirmenize yardımcı olabilir.

Bu sorguları kullanma hakkında bilgi için bkz . Azure İzleyici Log Analytics'te sorguları kullanma. Log Analytics'i kullanarak sorguları çalıştırma ve sonuçlarıyla çalışma hakkında eksiksiz bir öğretici için bkz . Log Analytics öğreticisi.

Önemli

Bu makaledeki sorgular, Kapsayıcı içgörüleri tarafından toplanan ve Log Analytics çalışma alanında depolanan verilere bağlıdır. Varsayılan veri toplama ayarlarını değiştirdiyseniz, sorgular beklenen sonuçları döndürmeyebilir. En önemlisi, küme için Prometheus ölçümlerini etkinleştirdiğinizden beri performans verilerinin toplanmasını devre dışı bırakmışsanız, tabloyu kullanan Perf sorgular sonuç döndürmez.

Performans veri toplamayı devre dışı bırakma da dahil olmak üzere önceden ayarlanmış yapılandırmalar için bkz . Kapsayıcı içgörülerinde veri toplamayı yapılandırma. Daha fazla veri toplama seçeneği için bkz . ConfigMap kullanarak Kapsayıcı içgörülerinde veri toplamayı yapılandırma.

Log Analytics’i açma

Log Analytics'i başlatmak için birden çok seçenek vardır. Her seçenek farklı bir kapsamla başlar. Çalışma alanı içindeki tüm verilere erişmek için İzleme menüsünde Günlükler'i seçin. Verileri tek bir Kubernetes kümesiyle sınırlamak için bu kümenin menüsünden Günlükler'i seçin.

Log Analytics'i başlatmayı gösteren ekran görüntüsü.

Mevcut günlük sorguları

Log Analytics'i kullanmak için günlük sorgusu yazmayı anlamanız gerekmez. Önceden oluşturulmuş birden çok sorgu arasından seçim yapabilirsiniz. Sorguları değişiklik yapmadan çalıştırabilir veya özel sorguya başlangıç olarak kullanabilirsiniz. Log Analytics ekranının üst kısmındaki Sorgular'ı seçin ve Kubernetes Services Kaynak türüne sahip sorguları görüntüleyin.

Kubernetes için Log Analytics sorgularını gösteren ekran görüntüsü.

Kapsayıcı tabloları

Kapsayıcı içgörüleri tarafından kullanılan tabloların listesi ve ayrıntılı açıklamaları için bkz . Azure İzleyici tablo başvurusu. Bu tabloların tümü günlük sorgularında kullanılabilir.

Örnek günlük sorguları

Genellikle bir veya iki örnekle başlayan sorgular oluşturmak ve sonra bunları gereksinimlerinize uyacak şekilde değiştirmek yararlı olur. Daha gelişmiş sorgular oluşturmaya yardımcı olmak için aşağıdaki örnek sorgularla denemeler yapabilirsiniz.

Kapsayıcının tüm yaşam döngüsü bilgilerini listeleme

ContainerInventory
| project Computer, Name, Image, ImageTag, ContainerState, CreatedTime, StartedTime, FinishedTime
| render table

Kubernetes olayları

Not

Varsayılan olarak, Normal olay türleri toplanmaz, bu nedenle collect_all_kube_events ConfigMap ayarı etkinleştirilmediği sürece KubeEvents tablosunu sorguladığınızda bunları görmezsiniz. Normal olayları toplamanız gerekiyorsa, container-azm-ms-agentconfig ConfigMap içinde collect_all_kube_events ayarını etkinleştirin. ConfigMap'i yapılandırma hakkında bilgi için bkz . Kapsayıcı içgörüleri için aracı veri toplamayı yapılandırma.

KubeEvents
| where not(isempty(Namespace))
| sort by TimeGenerated desc
| render table

Kapsayıcı CPU'sunu

Perf
| where ObjectName == "K8SContainer" and CounterName == "cpuUsageNanoCores" 
| summarize AvgCPUUsageNanoCores = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName 

Kapsayıcı belleği

Bu sorgu yalnızca Linux düğümleri için kullanılabilen bir sorgu kullanır memoryRssBytes .

Perf
| where ObjectName == "K8SContainer" and CounterName == "memoryRssBytes"
| summarize AvgUsedRssMemoryBytes = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName

Özel ölçümlerle dakika başına istek sayısı

InsightsMetrics
| where Name == "requests_count"
| summarize Val=any(Val) by TimeGenerated=bin(TimeGenerated, 1m)
| sort by TimeGenerated asc
| project RequestsPerMinute = Val - prev(Val), TimeGenerated
| render barchart 

Ada ve ad alanına göre podlar

let startTimestamp = ago(1h);
KubePodInventory
| where TimeGenerated > startTimestamp
| project ContainerID, PodName=Name, Namespace
| where PodName contains "name" and Namespace startswith "namespace"
| distinct ContainerID, PodName
| join
(
    ContainerLog
    | where TimeGenerated > startTimestamp
)
on ContainerID
// at this point before the next pipe, columns from both tables are available to be "projected". Due to both
// tables having a "Name" column, we assign an alias as PodName to one column which we actually want
| project TimeGenerated, PodName, LogEntry, LogEntrySource
| summarize by TimeGenerated, LogEntry
| order by TimeGenerated desc

Pod ölçeği genişletme (HPA)

Bu sorgu, her dağıtımdaki ölçeği genişletilmiş çoğaltma sayısını döndürür. HPA'da yapılandırılan en fazla çoğaltma sayısıyla ölçeği genişletme yüzdesini hesaplar.

let _minthreshold = 70; // minimum threshold goes here if you want to setup as an alert
let _maxthreshold = 90; // maximum threshold goes here if you want to setup as an alert
let startDateTime = ago(60m);
KubePodInventory
| where TimeGenerated >= startDateTime 
| where Namespace !in('default', 'kube-system') // List of non system namespace filter goes here.
| extend labels = todynamic(PodLabel)
| extend deployment_hpa = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| distinct tostring(deployment_hpa)
| join kind=inner (InsightsMetrics 
    | where TimeGenerated > startDateTime 
    | where Name == 'kube_hpa_status_current_replicas'
    | extend pTags = todynamic(Tags) //parse the tags for values
    | extend ns = todynamic(pTags.k8sNamespace) //parse namespace value from tags
    | extend deployment_hpa = todynamic(pTags.targetName) //parse HPA target name from tags
    | extend max_reps = todynamic(pTags.spec_max_replicas) // Parse maximum replica settings from HPA deployment
    | extend desired_reps = todynamic(pTags.status_desired_replicas) // Parse desired replica settings from HPA deployment
    | summarize arg_max(TimeGenerated, *) by tostring(ns), tostring(deployment_hpa), Cluster=toupper(tostring(split(_ResourceId, '/')[8])), toint(desired_reps), toint(max_reps), scale_out_percentage=(desired_reps * 100 / max_reps)
    //| where scale_out_percentage > _minthreshold and scale_out_percentage <= _maxthreshold
    )
    on deployment_hpa

Nodepool ölçek genişletmeleri

Bu sorgu, her düğüm havuzundaki etkin düğüm sayısını döndürür. Ölçek genişletme yüzdesini belirlemek için otomatik ölçeklendirici ayarlarında kullanılabilir etkin düğüm sayısını ve maksimum düğüm yapılandırmasını hesaplar. Bir dizi sonuç uyarı kuralında kullanmak üzere sorgudaki açıklamalı satırlara bakın.

let nodepoolMaxnodeCount = 10; // the maximum number of nodes in your auto scale setting goes here.
let _minthreshold = 20;
let _maxthreshold = 90;
let startDateTime = 60m;
KubeNodeInventory
| where TimeGenerated >= ago(startDateTime)
| extend nodepoolType = todynamic(Labels) //Parse the labels to get the list of node pool types
| extend nodepoolName = todynamic(nodepoolType[0].agentpool) // parse the label to get the nodepool name or set the specific nodepool name (like nodepoolName = 'agentpool)'
| summarize nodeCount = count(Computer) by ClusterName, tostring(nodepoolName), TimeGenerated
//(Uncomment the below two lines to set this as a log search alert)
//| extend scaledpercent = iff(((nodeCount * 100 / nodepoolMaxnodeCount) >= _minthreshold and (nodeCount * 100 / nodepoolMaxnodeCount) < _maxthreshold), "warn", "normal")
//| where scaledpercent == 'warn'
| summarize arg_max(TimeGenerated, *) by nodeCount, ClusterName, tostring(nodepoolName)
| project ClusterName, 
    TotalNodeCount= strcat("Total Node Count: ", nodeCount),
    ScaledOutPercentage = (nodeCount * 100 / nodepoolMaxnodeCount),  
    TimeGenerated, 
    nodepoolName

Sistem kapsayıcıları (çoğaltma kümesi) kullanılabilirliği

Bu sorgu sistem kapsayıcılarını (çoğaltma kümeleri) döndürür ve kullanılamayan yüzdeyi bildirir. Bir dizi sonuç uyarı kuralında kullanmak üzere sorgudaki açıklamalı satırlara bakın.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'ReplicaSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Sistem kapsayıcıları (daemonsets) kullanılabilirliği

Bu sorgu sistem kapsayıcılarını (daemonsets) döndürür ve kullanılamayan yüzdeyi bildirir. Bir dizi sonuç uyarı kuralında kullanmak üzere sorgudaki açıklamalı satırlara bakın.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'DaemonSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Kapsayıcı günlükleri

AKS için kapsayıcı günlükleri ContainerLogV2 tablosunda depolanır. Hedef podlardan, dağıtımlardan veya ad alanlarının stderr/stdout günlük çıkışını aramak için aşağıdaki örnek sorguları çalıştırabilirsiniz.

Belirli bir pod, ad alanı ve kapsayıcı için kapsayıcı günlükleri

ContainerLogV2
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where PodNamespace == "podNameSpace" //update with target namespace
| where PodName == "podName" //update with target pod
| where ContainerName == "containerName" //update with target container
| project TimeGenerated, Computer, ContainerId, LogMessage, LogSource

Belirli bir dağıtım için kapsayıcı günlükleri

let KubePodInv = KubePodInventory
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where Namespace == "deploymentNamespace" //update with target namespace
| where ControllerKind == "ReplicaSet"
| extend deployment = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| where deployment == "deploymentName" //update with target deployment
| extend ContainerId = ContainerID
| summarize arg_max(TimeGenerated, *)  by deployment, ContainerId, PodStatus, ContainerStatus
| project deployment, ContainerId, PodStatus, ContainerStatus;

KubePodInv
| join
(
    ContainerLogV2
  | where TimeGenerated >= startTime and TimeGenerated < endTime
  | where PodNamespace == "deploymentNamespace" //update with target namespace
  | where PodName startswith "deploymentName" //update with target deployment
) on ContainerId
| project TimeGenerated, deployment, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Belirli bir ad alanında başarısız olan podlar için kapsayıcı günlükleri

    let KubePodInv = KubePodInventory
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where _ResourceId =~ "clustereResourceID" //update with resource ID
    | where Namespace == "podNamespace" //update with target namespace
    | where PodStatus == "Failed"
    | extend ContainerId = ContainerID
    | summarize arg_max(TimeGenerated, *)  by  ContainerId, PodStatus, ContainerStatus
    | project ContainerId, PodStatus, ContainerStatus;

    KubePodInv
    | join
    (
        ContainerLogV2
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where PodNamespace == "podNamespace" //update with target namespace
    ) on ContainerId
    | project TimeGenerated, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Kapsayıcı içgörüleri varsayılan görselleştirme sorguları

Bu sorgular, kapsayıcı içgörülerinden kullanıma alınmış görselleştirmelerden oluşturulur. Varsayılan grafikler yerine özel maliyet iyileştirme ayarlarını etkinleştirdiyseniz bunları kullanmayı seçebilirsiniz.

Duruma göre düğüm sayısı

Bu grafik için gerekli tablolar KubeNodeInventory'dir.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubeNodeInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by Timestamp = bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubeNodeInventory 
| where ClusterId =~ clusterId 
| summarize TotalCount = count(), ReadyCount = sumif(1, Status contains ('Ready')) by ClusterId, Timestamp = bin(TimeGenerated, trendBinSize) 
| extend NotReadyCount = TotalCount - ReadyCount ) on ClusterId, Timestamp 
| project ClusterId, Timestamp, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, ReadyCount = todouble(ReadyCount) / ClusterSnapshotCount, NotReadyCount = todouble(NotReadyCount) / ClusterSnapshotCount;

 rawData 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(ReadyCount, maxListSize), makelist(NotReadyCount, maxListSize) by ClusterId 
| join ( rawData 
| summarize Avg_TotalCount = avg(TotalCount), Avg_ReadyCount = avg(ReadyCount), Avg_NotReadyCount = avg(NotReadyCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_ReadyCount, Avg_NotReadyCount, list_Timestamp, list_TotalCount, list_ReadyCount, list_NotReadyCount 

Duruma göre pod sayısı

Bu grafik için gerekli tablolar KubePodInventory'dir.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubePodInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubePodInventory 
| where ClusterId =~ clusterId 
| summarize PodStatus=any(PodStatus) by TimeGenerated, PodUid, ClusterId 
| summarize TotalCount = count(), PendingCount = sumif(1, PodStatus =~ 'Pending'), RunningCount = sumif(1, PodStatus =~ 'Running'), SucceededCount = sumif(1, PodStatus =~ 'Succeeded'), FailedCount = sumif(1, PodStatus =~ 'Failed'), TerminatingCount = sumif(1, PodStatus =~ 'Terminating') by ClusterId, bin(TimeGenerated, trendBinSize) ) on ClusterId, TimeGenerated 
| extend UnknownCount = TotalCount - PendingCount - RunningCount - SucceededCount - FailedCount - TerminatingCount 
| project ClusterId, Timestamp = TimeGenerated, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, PendingCount = todouble(PendingCount) / ClusterSnapshotCount, RunningCount = todouble(RunningCount) / ClusterSnapshotCount, SucceededCount = todouble(SucceededCount) / ClusterSnapshotCount, FailedCount = todouble(FailedCount) / ClusterSnapshotCount, TerminatingCount = todouble(TerminatingCount) / ClusterSnapshotCount, UnknownCount = todouble(UnknownCount) / ClusterSnapshotCount;

 let rawDataCached = rawData;
 
 rawDataCached 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(PendingCount, maxListSize), makelist(RunningCount, maxListSize), makelist(SucceededCount, maxListSize), makelist(FailedCount, maxListSize), makelist(TerminatingCount, maxListSize), makelist(UnknownCount, maxListSize) by ClusterId 
| join ( rawDataCached 
| summarize Avg_TotalCount = avg(TotalCount), Avg_PendingCount = avg(PendingCount), Avg_RunningCount = avg(RunningCount), Avg_SucceededCount = avg(SucceededCount), Avg_FailedCount = avg(FailedCount), Avg_TerminatingCount = avg(TerminatingCount), Avg_UnknownCount = avg(UnknownCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_PendingCount, Avg_RunningCount, Avg_SucceededCount, Avg_FailedCount, Avg_TerminatingCount, Avg_UnknownCount, list_Timestamp, list_TotalCount, list_PendingCount, list_RunningCount, list_SucceededCount, list_FailedCount, list_TerminatingCount, list_UnknownCount 

Duruma göre kapsayıcı listesi

Bu grafik için gerekli tablolar KubePodInventory ve Perf'tir.

 let startDateTime = datetime('start time');
 let endDateTime = datetime('end time');
 let trendBinSize = 15m;
 let maxResultCount = 10000;
 let metricUsageCounterName = 'cpuUsageNanoCores';
 let metricLimitCounterName = 'cpuLimitNanoCores';
 
 let KubePodInventoryTable = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where isnotempty(Computer) 
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, ControllerName, Node = Computer, Pod = Name, ContainerInstance = ContainerName, ContainerID, ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp , 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus;

 let startRestart = KubePodInventoryTable 
| summarize arg_min(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project Node, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), StartRestart = Restarts;

 let IdentityTable = KubePodInventoryTable 
| summarize arg_max(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), ContainerID, ReadySinceNow, Restarts, Status = iff(Status =~ 'running', 0, iff(Status=~'waiting', 1, iff(Status =~'terminated', 2, 3))), ContainerStatusReason, ControllerKind, Containers = 1, ContainerName = tostring(split(ContainerInstance, '/')[1]), PodStatus, LastPodInventoryTimeGenerated = TimeGenerated, ClusterId;

 let CachedIdentityTable = IdentityTable;
 
 let FilteredPerfTable = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' 
| project Node = Computer, TimeGenerated, CounterName, CounterValue, InstanceName ;

 let CachedFilteredPerfTable = FilteredPerfTable;
 
 let LimitsTable = CachedFilteredPerfTable 
| where CounterName =~ metricLimitCounterName 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, LimitsValue = iff(CounterName =~ 'cpuLimitNanoCores', CounterValue/1000000, CounterValue), TimeGenerated;
 let MetaDataTable = CachedIdentityTable 
| join kind=leftouter ( LimitsTable ) on Node, InstanceName 
| join kind= leftouter ( startRestart ) on Node, InstanceName 
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, InstanceName, ContainerID, ReadySinceNow, Restarts, LimitsValue, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind, Containers, ContainerName, ContainerInstance, StartRestart, PodStatus, LastPodInventoryTimeGenerated, ClusterId;

 let UsagePerfTable = CachedFilteredPerfTable 
| where CounterName =~ metricUsageCounterName 
| project TimeGenerated, Node, InstanceName, CounterValue = iff(CounterName =~ 'cpuUsageNanoCores', CounterValue/1000000, CounterValue);

 let LastRestartPerfTable = CachedFilteredPerfTable 
| where CounterName =~ 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, UpTime = CounterValue, LastReported = TimeGenerated;

 let AggregationTable = UsagePerfTable 
| summarize Aggregation = max(CounterValue) by Node, InstanceName 
| project Node, InstanceName, Aggregation;

 let TrendTable = UsagePerfTable 
| summarize TrendAggregation = max(CounterValue) by bin(TimeGenerated, trendBinSize), Node, InstanceName 
| project TrendTimeGenerated = TimeGenerated, Node, InstanceName , TrendAggregation 
| summarize TrendList = makelist(pack("timestamp", TrendTimeGenerated, "value", TrendAggregation)) by Node, InstanceName;

 let containerFinalTable = MetaDataTable 
| join kind= leftouter( AggregationTable ) on Node, InstanceName 
| join kind = leftouter (LastRestartPerfTable) on Node, InstanceName 
| order by Aggregation desc, ContainerName 
| join kind = leftouter ( TrendTable) on Node, InstanceName 
| extend ContainerIdentity = strcat(ContainerName, ' ', Pod) 
| project ContainerIdentity, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), Aggregation, Node, Restarts, ReadySinceNow, TrendList = iif(isempty(TrendList), parse_json('[]'), TrendList), LimitsValue, ControllerName, ControllerKind, ContainerID, Containers, UpTimeNow = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(UpTime), make_datetime(1970,1,1))), ContainerInstance, StartRestart, LastReportedDelta = datetime_diff('Millisecond', endDateTime, LastReported), PodStatus, InstanceName, Namespace, LastPodInventoryTimeGenerated, ClusterId;
containerFinalTable 
| limit 200

Duruma göre Denetleyici listesi

Bu grafik için gerekli tablolar KubePodInventory ve Perf'tir.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let trendBinSize = 15m;
 let metricLimitCounterName = 'cpuLimitNanoCores';
 let metricUsageCounterName = 'cpuUsageNanoCores';
 
 let primaryInventory = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| extend Node = Computer 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, Node = Computer, ControllerName, Pod = Name, ContainerInstance = ContainerName, ContainerID, InstanceName, PerfJoinKey = strcat(ClusterId, '/', ContainerName), ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp, 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus, ControllerId = strcat(ClusterId, '/', Namespace, '/', ControllerName);

let podStatusRollup = primaryInventory 
| summarize arg_max(TimeGenerated, *) by Pod 
| project ControllerId, PodStatus, TimeGenerated 
| summarize count() by ControllerId, PodStatus = iif(TimeGenerated < ago(30m), 'Unknown', PodStatus) 
| summarize PodStatusList = makelist(pack('Status', PodStatus, 'Count', count_)) by ControllerId;

let latestContainersByController = primaryInventory 
| where isnotempty(Node) 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| project ControllerId, PerfJoinKey;

let filteredPerformance = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' //update with resource ID
| project TimeGenerated, CounterName, CounterValue, InstanceName, Node = Computer ;

let metricByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by PerfJoinKey, CounterName 
| join (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(Value) by ControllerId, CounterName 
| project ControllerId, CounterName, AggregationValue = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value);

let containerCountByController = latestContainersByController 
| summarize ContainerCount = count() by ControllerId;

let restartCountsByController = primaryInventory 
| summarize Restarts = max(Restarts) by ControllerId;

let oldestRestart = primaryInventory 
| summarize ReadySinceNow = min(ReadySinceNow) by ControllerId;

let trendLineByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by bin(TimeGenerated, trendBinSize), PerfJoinKey, CounterName 
| order by TimeGenerated asc 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value=sum(Value) by ControllerId, TimeGenerated, CounterName 
| project TimeGenerated, Value = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value), ControllerId 
| summarize TrendList = makelist(pack("timestamp", TimeGenerated, "value", Value)) by ControllerId;

let latestLimit = filteredPerformance 
| where CounterName =~ metricLimitCounterName 
| extend PerfJoinKey = InstanceName 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(CounterValue) by ControllerId, CounterName 
| project ControllerId, LimitValue = iff(CounterName =~ 'cpuLimitNanoCores', Value/1000000, Value);

let latestTimeGeneratedByController = primaryInventory 
| summarize arg_max(TimeGenerated, *) by ControllerId 
| project ControllerId, LastTimeGenerated = TimeGenerated;

primaryInventory 
| distinct ControllerId, ControllerName, ControllerKind, Namespace 
| join kind=leftouter (podStatusRollup) on ControllerId 
| join kind=leftouter (metricByController) on ControllerId 
| join kind=leftouter (containerCountByController) on ControllerId 
| join kind=leftouter (restartCountsByController) on ControllerId 
| join kind=leftouter (oldestRestart) on ControllerId 
| join kind=leftouter (trendLineByController) on ControllerId 
| join kind=leftouter (latestLimit) on ControllerId 
| join kind=leftouter (latestTimeGeneratedByController) on ControllerId 
| project ControllerId, ControllerName, ControllerKind, PodStatusList, AggregationValue, ContainerCount = iif(isempty(ContainerCount), 0, ContainerCount), Restarts, ReadySinceNow, Node = '-', TrendList, LimitValue, LastTimeGenerated, Namespace 
| limit 250;

Duruma göre Düğüm listesi

Bu grafik için gerekli tablolar KubeNodeInventory, KubePodInventory ve Perf'dir.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let binSize = 15m;
 let limitMetricName = 'cpuCapacityNanoCores';
 let usedMetricName = 'cpuUsageNanoCores'; 
 
 let materializedNodeInventory = KubeNodeInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| project ClusterName, ClusterId, Node = Computer, TimeGenerated, Status, NodeName = Computer, NodeId = strcat(ClusterId, '/', Computer), Labels 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let materializedPerf = Perf 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where ObjectName == 'K8SNode' 
| extend NodeId = InstanceName;

 let materializedPodInventory = KubePodInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let inventoryOfCluster = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Status) by ClusterName, ClusterId, NodeName, NodeId;

 let labelsByNode = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Labels) by ClusterName, ClusterId, NodeName, NodeId;

 let countainerCountByNode = materializedPodInventory 
| project ContainerName, NodeId = strcat(ClusterId, '/', Computer) 
| distinct NodeId, ContainerName 
| summarize ContainerCount = count() by NodeId;

 let latestUptime = materializedPerf 
| where CounterName == 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, CounterValue) by NodeId 
| extend UpTimeMs = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(CounterValue), make_datetime(1970,1,1))) 
| project NodeId, UpTimeMs;

 let latestLimitOfNodes = materializedPerf 
| where CounterName == limitMetricName 
| summarize CounterValue = max(CounterValue) by NodeId 
| project NodeId, LimitValue = CounterValue;

 let actualUsageAggregated = materializedPerf 
| where CounterName == usedMetricName 
| summarize Aggregation = percentile(CounterValue, 95) by NodeId //This line updates to the desired aggregation
| project NodeId, Aggregation;

 let aggregateTrendsOverTime = materializedPerf 
| where CounterName == usedMetricName 
| summarize TrendAggregation = percentile(CounterValue, 95) by NodeId, bin(TimeGenerated, binSize) //This line updates to the desired aggregation
| project NodeId, TrendAggregation, TrendDateTime = TimeGenerated;

 let unscheduledPods = materializedPodInventory 
| where isempty(Computer) 
| extend Node = Computer 
| where isempty(ContainerStatus) 
| where PodStatus == 'Pending' 
| order by TimeGenerated desc 
| take 1 
| project ClusterName, NodeName = 'unscheduled', LastReceivedDateTime = TimeGenerated, Status = 'unscheduled', ContainerCount = 0, UpTimeMs = '0', Aggregation = '0', LimitValue = '0', ClusterId;

 let scheduledPods = inventoryOfCluster 
| join kind=leftouter (aggregateTrendsOverTime) on NodeId 
| extend TrendPoint = pack("TrendTime", TrendDateTime, "TrendAggregation", TrendAggregation) 
| summarize make_list(TrendPoint) by NodeId, NodeName, Status 
| join kind=leftouter (labelsByNode) on NodeId 
| join kind=leftouter (countainerCountByNode) on NodeId 
| join kind=leftouter (latestUptime) on NodeId 
| join kind=leftouter (latestLimitOfNodes) on NodeId 
| join kind=leftouter (actualUsageAggregated) on NodeId 
| project ClusterName, NodeName, ClusterId, list_TrendPoint, LastReceivedDateTime = TimeGenerated, Status, ContainerCount, UpTimeMs, Aggregation, LimitValue, Labels 
| limit 250;

 union (scheduledPods), (unscheduledPods) 
| project ClusterName, NodeName, LastReceivedDateTime, Status, ContainerCount, UpTimeMs = UpTimeMs_long, Aggregation = Aggregation_real, LimitValue = LimitValue_real, list_TrendPoint, Labels, ClusterId 

Prometheus ölçümleri

Aşağıdaki örnekler, Prometheus ölçümlerini Kapsayıcı içgörüleriyle Log Analytics çalışma alanına gönderme bölümünde açıklanan yapılandırmayı gerektirir.

Azure İzleyici tarafından kazınmış ve ad alanına göre filtrelenmiş Prometheus ölçümlerini görüntülemek için "prometheus" değerini belirtin. Kubernetes ad alanından Prometheus ölçümlerini default görüntülemek için örnek bir sorgu aşağıda verilmiştir.

InsightsMetrics 
| where Namespace contains "prometheus"
| extend tags=parse_json(Tags)
| summarize count() by Name

Prometheus verileri doğrudan ada göre de sorgulanabilir.

InsightsMetrics 
| where Namespace contains "prometheus"
| where Name contains "some_prometheus_metric"

Her ölçüm boyutunun günlük GB cinsinden alım hacmini belirlemek ve yüksek olup olmadığını anlamak için aşağıdaki sorgu sağlanır.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize VolumeInGB = (sum(_BilledSize) / (1024 * 1024 * 1024)) by Name
| order by VolumeInGB desc
| render barchart

Çıkışta aşağıdaki örneğe benzer sonuçlar gösterilir.

Veri alma biriminin günlük sorgusu sonuçlarını gösteren ekran görüntüsü.

Çalışma alanına alınan veri hacminin yüksek olup olmadığını anlamak için gb cinsinden her ölçüm boyutunun bir ay boyunca ne olduğunu tahmin etmek için aşağıdaki sorgu sağlanır.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize EstimatedGBPer30dayMonth = (sum(_BilledSize) / (1024 * 1024 * 1024)) * 30 by Name
| order by EstimatedGBPer30dayMonth desc
| render barchart

Çıkışta aşağıdaki örneğe benzer sonuçlar gösterilir.

Veri alma biriminin günlük sorgusu sonuçlarını gösteren ekran görüntüsü.

Yapılandırma veya kazıma hataları

Yapılandırma veya kazıma hatalarını araştırmak için aşağıdaki örnek sorgu tablodan KubeMonAgentEvents bilgi olayları döndürür.

KubeMonAgentEvents | where Level != "Info" 

Çıktı aşağıdaki örneğe benzer sonuçlar gösterir:

Bir aracıdan gelen bilgilendirme olaylarının günlük sorgusu sonuçlarını gösteren ekran görüntüsü.

Sık sorulan sorular

Bu bölüm, sık sorulan soruların yanıtlarını sağlar.

Grafana'da toplanan ölçümleri görüntüleyebilir miyim?

Kapsayıcı içgörüleri, Grafana panolarında Log Analytics çalışma alanınızda depolanan ölçümlerin görüntülenmesini destekler. Grafana pano deposundan indirebileceğiniz bir şablon sağladık. Kullanmaya başlamak ve özel Grafana panolarında görselleştirmek için izlenen kümelerinizden verileri sorgulamayı öğrenmenize yardımcı olması için bunu kullanın.

Log Analytics'te neden 16 KB'tan büyük günlük satırları birden çok kayda bölünür?

Aracı, kapsayıcıların stdout ve stderr'ını yakalamak için Docker JSON dosya günlüğü sürücüsünü kullanır. Bu günlük sürücüsü, stdout veya stderr dosyasından bir dosyaya kopyalandığında 16 KB'tan büyük günlük satırlarını birden çok satıra böler. 64 KB'a kadar günlük kaydı boyutunu almak için Çok satırlı günlüğü kullanın.

Sonraki adımlar

Kapsayıcı içgörüleri önceden tanımlanmış bir uyarı kümesi içermez. DevOps veya operasyonel süreçlerinizi ve yordamlarınızı desteklemek üzere yüksek CPU ve bellek kullanımı için önerilen uyarılar oluşturmayı öğrenmek için bkz . Kapsayıcı içgörüleriyle performans uyarıları oluşturma.