Math.Exp(Double) Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
Belirtilen güce yükseltilmiş döndürür e
.
public:
static double Exp(double d);
public static double Exp (double d);
static member Exp : double -> double
Public Shared Function Exp (d As Double) As Double
Parametreler
- d
- Double
Güç belirten bir sayı.
Döndürülenler
Üssüne d
yükseltilen sayıe
. veya PositiveInfinitydeğerine eşitse d
NaN, bu değer döndürülür. eşitse d
NegativeInfinity, 0 döndürülür.
Örnekler
Aşağıdaki örnek, seçilen değerler için belirli üstel ve logaritmik kimlikleri değerlendirmek için kullanır Exp .
// Example for the Math::Exp( double ) method.
using namespace System;
// Evaluate logarithmic/exponential identity with a given argument.
void UseLnExp( double arg )
{
// Evaluate e ^ ln(X) == ln(e ^ X) == X.
Console::WriteLine( "\n Math::Exp(Math::Log({0})) == {1:E16}\n"
" Math::Log(Math::Exp({0})) == {2:E16}", arg, Math::Exp( Math::Log( arg ) ), Math::Log( Math::Exp( arg ) ) );
}
// Evaluate exponential identities that are functions of two arguments.
void UseTwoArgs( double argX, double argY )
{
// Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
Console::WriteLine( "\nMath::Exp({0}) * Math::Exp({1}) == {2:E16}"
"\n Math::Exp({0} + {1}) == {3:E16}", argX, argY, Math::Exp( argX ) * Math::Exp( argY ), Math::Exp( argX + argY ) );
// Evaluate (e ^ X) ^ Y == e ^ (X * Y).
Console::WriteLine( " Math::Pow(Math::Exp({0}), {1}) == {2:E16}"
"\n Math::Exp({0} * {1}) == {3:E16}", argX, argY, Math::Pow( Math::Exp( argX ), argY ), Math::Exp( argX * argY ) );
// Evaluate X ^ Y == e ^ (Y * ln(X)).
Console::WriteLine( " Math::Pow({0}, {1}) == {2:E16}"
"\nMath::Exp({1} * Math::Log({0})) == {3:E16}", argX, argY, Math::Pow( argX, argY ), Math::Exp( argY * Math::Log( argX ) ) );
}
int main()
{
Console::WriteLine( "This example of Math::Exp( double ) "
"generates the following output.\n" );
Console::WriteLine( "Evaluate [e ^ ln(X) == ln(e ^ X) == X] "
"with selected values for X:" );
UseLnExp( 0.1 );
UseLnExp( 1.2 );
UseLnExp( 4.9 );
UseLnExp( 9.9 );
Console::WriteLine( "\nEvaluate these identities with "
"selected values for X and Y:" );
Console::WriteLine( " (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
Console::WriteLine( " (e ^ X) ^ Y == e ^ (X * Y)" );
Console::WriteLine( " X ^ Y == e ^ (Y * ln(X))" );
UseTwoArgs( 0.1, 1.2 );
UseTwoArgs( 1.2, 4.9 );
UseTwoArgs( 4.9, 9.9 );
}
/*
This example of Math::Exp( double ) generates the following output.
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
Math::Exp(Math::Log(0.1)) == 1.0000000000000001E-001
Math::Log(Math::Exp(0.1)) == 1.0000000000000008E-001
Math::Exp(Math::Log(1.2)) == 1.2000000000000000E+000
Math::Log(Math::Exp(1.2)) == 1.2000000000000000E+000
Math::Exp(Math::Log(4.9)) == 4.9000000000000012E+000
Math::Log(Math::Exp(4.9)) == 4.9000000000000004E+000
Math::Exp(Math::Log(9.9)) == 9.9000000000000004E+000
Math::Log(Math::Exp(9.9)) == 9.9000000000000004E+000
Evaluate these identities with selected values for X and Y:
(e ^ X) * (e ^ Y) == e ^ (X + Y)
(e ^ X) ^ Y == e ^ (X * Y)
X ^ Y == e ^ (Y * ln(X))
Math::Exp(0.1) * Math::Exp(1.2) == 3.6692966676192444E+000
Math::Exp(0.1 + 1.2) == 3.6692966676192444E+000
Math::Pow(Math::Exp(0.1), 1.2) == 1.1274968515793757E+000
Math::Exp(0.1 * 1.2) == 1.1274968515793757E+000
Math::Pow(0.1, 1.2) == 6.3095734448019331E-002
Math::Exp(1.2 * Math::Log(0.1)) == 6.3095734448019344E-002
Math::Exp(1.2) * Math::Exp(4.9) == 4.4585777008251705E+002
Math::Exp(1.2 + 4.9) == 4.4585777008251716E+002
Math::Pow(Math::Exp(1.2), 4.9) == 3.5780924170885260E+002
Math::Exp(1.2 * 4.9) == 3.5780924170885277E+002
Math::Pow(1.2, 4.9) == 2.4433636334442981E+000
Math::Exp(4.9 * Math::Log(1.2)) == 2.4433636334442981E+000
Math::Exp(4.9) * Math::Exp(9.9) == 2.6764450551890982E+006
Math::Exp(4.9 + 9.9) == 2.6764450551891015E+006
Math::Pow(Math::Exp(4.9), 9.9) == 1.1684908531676833E+021
Math::Exp(4.9 * 9.9) == 1.1684908531676829E+021
Math::Pow(4.9, 9.9) == 6.8067718210957060E+006
Math::Exp(9.9 * Math::Log(4.9)) == 6.8067718210956985E+006
*/
// Example for the Math.Exp( double ) method.
using System;
class ExpDemo
{
public static void Main()
{
Console.WriteLine(
"This example of Math.Exp( double ) " +
"generates the following output.\n" );
Console.WriteLine(
"Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
"with selected values for X:" );
UseLnExp(0.1);
UseLnExp(1.2);
UseLnExp(4.9);
UseLnExp(9.9);
Console.WriteLine(
"\nEvaluate these identities with " +
"selected values for X and Y:" );
Console.WriteLine( " (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
Console.WriteLine( " (e ^ X) ^ Y == e ^ (X * Y)" );
Console.WriteLine( " X ^ Y == e ^ (Y * ln(X))" );
UseTwoArgs(0.1, 1.2);
UseTwoArgs(1.2, 4.9);
UseTwoArgs(4.9, 9.9);
}
// Evaluate logarithmic/exponential identity with a given argument.
static void UseLnExp(double arg)
{
// Evaluate e ^ ln(X) == ln(e ^ X) == X.
Console.WriteLine(
"\n Math.Exp(Math.Log({0})) == {1:E16}\n" +
" Math.Log(Math.Exp({0})) == {2:E16}",
arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
}
// Evaluate exponential identities that are functions of two arguments.
static void UseTwoArgs(double argX, double argY)
{
// Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
Console.WriteLine(
"\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" +
"\n Math.Exp({0} + {1}) == {3:E16}",
argX, argY, Math.Exp(argX) * Math.Exp(argY),
Math.Exp(argX + argY) );
// Evaluate (e ^ X) ^ Y == e ^ (X * Y).
Console.WriteLine(
" Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
"\n Math.Exp({0} * {1}) == {3:E16}",
argX, argY, Math.Pow(Math.Exp(argX), argY),
Math.Exp(argX * argY) );
// Evaluate X ^ Y == e ^ (Y * ln(X)).
Console.WriteLine(
" Math.Pow({0}, {1}) == {2:E16}" +
"\nMath.Exp({1} * Math.Log({0})) == {3:E16}",
argX, argY, Math.Pow(argX, argY),
Math.Exp(argY * Math.Log(argX)) );
}
}
/*
This example of Math.Exp( double ) generates the following output.
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001
Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000
Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000
Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000
Evaluate these identities with selected values for X and Y:
(e ^ X) * (e ^ Y) == e ^ (X + Y)
(e ^ X) ^ Y == e ^ (X * Y)
X ^ Y == e ^ (Y * ln(X))
Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002
Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000
Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/
// Example for the Math.Exp( double ) method.
// The exp function may be used instead.
open System
printfn "This example of Math.Exp( double ) generates the following output.\n"
printfn "Evaluate [e ^ ln(X) = ln(e ^ X) = X] with selected values for X:"
// Evaluate logarithmic/exponential identity with a given argument.
let useLnExp arg =
// Evaluate e ^ ln(X) = ln(e ^ X) = X.
printfn $"\n Math.Exp(Math.Log({arg})) = {Math.Exp(Math.Log arg):E16}\n Math.Log(Math.Exp({arg})) = {Math.Log(Math.Exp arg):E16}"
// Evaluate exponential identities that are functions of two arguments.
let useTwoArgs argX argY =
// Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
printfn $"""
Math.Exp({argX}) * Math.Exp({argY}) = {Math.Exp argX * Math.Exp argY:E16}" +
Math.Exp({argX} + {argY}) = {Math.Exp(argX + argY):E16}"""
// Evaluate (e ^ X) ^ Y = e ^ (X * Y).
printfn $" Math.Pow(Math.Exp({argX}), {argY}) = {Math.Pow(Math.Exp argX, argY):E16}\n Math.Exp({argX} * {argY}) = {Math.Exp(argX * argY):E16}"
// Evaluate X ^ Y = e ^ (Y * ln(X)).
printfn $" Math.Pow({argX}, {argY}) = {Math.Pow(argX, argY):E16}\nMath.Exp({argY} * Math.Log({argX})) = {Math.Exp(argY * Math.Log argX):E16}"
useLnExp 0.1
useLnExp 1.2
useLnExp 4.9
useLnExp 9.9
printfn "\nEvaluate these identities with selected values for X and Y:"
printfn " (e ^ X) * (e ^ Y) = e ^ (X + Y)"
printfn " (e ^ X) ^ Y = e ^ (X * Y)"
printfn " X ^ Y = e ^ (Y * ln(X))"
useTwoArgs 0.1 1.2
useTwoArgs 1.2 4.9
useTwoArgs 4.9 9.9
// This example of Math.Exp( double ) generates the following output.
//
// Evaluate [e ^ ln(X) = ln(e ^ X) = X] with selected values for X:
//
// Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
// Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
//
// Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
// Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
//
// Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
// Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
//
// Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
// Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
//
// Evaluate these identities with selected values for X and Y:
// (e ^ X) * (e ^ Y) = e ^ (X + Y)
// (e ^ X) ^ Y = e ^ (X * Y)
// X ^ Y = e ^ (Y * ln(X))
//
// Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
// Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
// Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
// Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
// Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
// Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
//
// Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
// Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
// Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
// Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
// Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
// Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
//
// Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
// Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
// Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
// Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
// Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
// Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006
' Example for the Math.Exp( Double ) method.
Module ExpDemo
Sub Main()
Console.WriteLine( _
"This example of Math.Exp( Double ) " & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Evaluate [e ^ ln(X) == ln(e ^ X) == X] " & _
"with selected values for X:")
UseLnExp(0.1)
UseLnExp(1.2)
UseLnExp(4.9)
UseLnExp(9.9)
Console.WriteLine( vbCrLf & _
"Evaluate these identities with selected values for X and Y:")
Console.WriteLine(" (e ^ X) * (e ^ Y) = e ^ (X + Y)")
Console.WriteLine(" (e ^ X) ^ Y = e ^ (X * Y)")
Console.WriteLine(" X ^ Y = e ^ (Y * ln(X))")
UseTwoArgs(0.1, 1.2)
UseTwoArgs(1.2, 4.9)
UseTwoArgs(4.9, 9.9)
End Sub
' Evaluate logarithmic/exponential identity with a given argument.
Sub UseLnExp(arg As Double)
' Evaluate e ^ ln(X) = ln(e ^ X) = X.
Console.WriteLine( _
vbCrLf & " Math.Exp(Math.Log({0})) = {1:E16}" + _
vbCrLf & " Math.Log(Math.Exp({0})) = {2:E16}", _
arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)))
End Sub
' Evaluate exponential identities that are functions of two arguments.
Sub UseTwoArgs(argX As Double, argY As Double)
' Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
Console.WriteLine( _
vbCrLf & "Math.Exp({0}) * Math.Exp({1}) = {2:E16}" + _
vbCrLf & " Math.Exp({0} + {1}) = {3:E16}", _
argX, argY, Math.Exp(argX) * Math.Exp(argY), _
Math.Exp((argX + argY)))
' Evaluate (e ^ X) ^ Y = e ^ (X * Y).
Console.WriteLine( _
" Math.Pow(Math.Exp({0}), {1}) = {2:E16}" + _
vbCrLf & " Math.Exp({0} * {1}) = {3:E16}", _
argX, argY, Math.Pow(Math.Exp(argX), argY), _
Math.Exp((argX * argY)))
' Evaluate X ^ Y = e ^ (Y * ln(X)).
Console.WriteLine( _
" Math.Pow({0}, {1}) = {2:E16}" + _
vbCrLf & "Math.Exp({1} * Math.Log({0})) = {3:E16}", _
argX, argY, Math.Pow(argX, argY), _
Math.Exp((argY * Math.Log(argX))))
End Sub
End Module 'ExpDemo
' This example of Math.Exp( Double ) generates the following output.
'
' Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
'
' Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
' Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
'
' Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
' Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
'
' Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
' Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
'
' Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
' Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
'
' Evaluate these identities with selected values for X and Y:
' (e ^ X) * (e ^ Y) = e ^ (X + Y)
' (e ^ X) ^ Y = e ^ (X * Y)
' X ^ Y = e ^ (Y * ln(X))
'
' Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
' Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
' Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
' Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
' Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
' Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
'
' Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
' Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
' Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
' Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
' Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
' Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
'
' Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
' Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
' Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
' Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
' Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
' Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006
Açıklamalar
e
değeri yaklaşık 2,71828 olan matematiksel bir sabittir.
Pow Diğer tabanların güçlerini hesaplamak için yöntemini kullanın.
Bu yöntem, temel alınan C çalışma zamanını çağırır ve tam sonuç veya geçerli giriş aralığı farklı işletim sistemleri veya mimariler arasında farklılık gösterebilir.