ThreadPool.GetMaxThreads(Int32, Int32) Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
İş parçacığı havuzuna yapılan ve eşzamanlı olarak etkin olabilecek istek sayısını alır. İş parçacığı havuzu iş parçacıkları kullanılabilir duruma gelene kadar bu sayın üzerindeki tüm istekler kuyruğa alınmış olarak kalır.
public:
static void GetMaxThreads([Runtime::InteropServices::Out] int % workerThreads, [Runtime::InteropServices::Out] int % completionPortThreads);
public static void GetMaxThreads (out int workerThreads, out int completionPortThreads);
static member GetMaxThreads : int * int -> unit
Public Shared Sub GetMaxThreads (ByRef workerThreads As Integer, ByRef completionPortThreads As Integer)
Parametreler
- workerThreads
- Int32
İş parçacığı havuzundaki en fazla çalışan iş parçacığı sayısı.
- completionPortThreads
- Int32
İş parçacığı havuzundaki zaman uyumsuz G/Ç iş parçacığı sayısı üst sınırı.
Örnekler
Aşağıdaki kod örneği, iş parçacığı havuzundaki iş parçacığı sayısı üst sınırının ve kullanılabilir sayısının nasıl alınıp alınamaya çalışılmayı gösterir. bir iş öğesi, iki dosyaya zaman uyumsuz olarak yazmak için kullanan FileStream
kuyruğa alınır. Geri çağırma yöntemleri çakışacak şekilde zamanlandı. Çalışan iş parçacığı iş öğesini işler ve bilgisayardaki işlemcilerin hızına ve sayısına bağlı olarak, yazma işlemlerini bir veya iki tamamlama bağlantı noktası iş parçacığı işler.
using namespace System;
using namespace System::IO;
using namespace System::Security::Permissions;
using namespace System::Threading;
ref class ThreadPoolTest
{
private:
// Maintains state information to be passed to EndWriteCallback.
// This information allows the callback to end the asynchronous
// write operation and signal when it is finished.
ref class State
{
public:
FileStream^ fStream;
AutoResetEvent^ autoEvent;
State( FileStream^ fStream, AutoResetEvent^ autoEvent )
{
this->fStream = fStream;
this->autoEvent = autoEvent;
}
};
public:
ThreadPoolTest(){}
static void EndWriteCallback( IAsyncResult^ asyncResult )
{
Console::WriteLine( "Starting EndWriteCallback." );
State^ stateInfo = dynamic_cast<State^>(asyncResult->AsyncState);
int workerThreads;
int portThreads;
try
{
ThreadPool::GetAvailableThreads( workerThreads, portThreads );
Console::WriteLine( "\nAvailable worker threads: \t{0}"
"\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
stateInfo->fStream->EndWrite( asyncResult );
// Sleep so the other thread has a chance to run
// before the current thread ends.
Thread::Sleep( 1500 );
}
catch ( Exception^ e )
{
}
finally
{
// Signal that the current thread is finished.
stateInfo->autoEvent->Set();
Console::WriteLine( "Ending EndWriteCallback." );
}
}
static void WorkItemMethod( Object^ mainEvent )
{
Console::WriteLine( "\nStarting WorkItem.\n" );
AutoResetEvent^ autoEvent = gcnew AutoResetEvent( false );
// Create some data.
const int ArraySize = 10000;
const int BufferSize = 1000;
array<Byte>^byteArray = gcnew array<Byte>(ArraySize);
(gcnew Random)->NextBytes( byteArray );
// Create two files and two State objects.
FileStream^ fileWriter1 = gcnew FileStream( "C:\\Test1@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
FileStream^ fileWriter2 = gcnew FileStream( "C:\\Test2@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
State^ stateInfo1 = gcnew State( fileWriter1,autoEvent );
State^ stateInfo2 = gcnew State( fileWriter2,autoEvent );
// Asynchronously write to the files.
fileWriter1->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo1 );
fileWriter2->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo2 );
// Wait for each callback to finish.
autoEvent->WaitOne();
autoEvent->WaitOne();
fileWriter1->Close();
fileWriter2->Close();
Console::WriteLine( "\nEnding WorkItem.\n" );
// Signal Main that the work item is finished.
dynamic_cast<AutoResetEvent^>(mainEvent)->Set();
}
};
int main()
{
AutoResetEvent^ mainEvent = gcnew AutoResetEvent( false );
int workerThreads;
int portThreads;
ThreadPool::GetMaxThreads( workerThreads, portThreads );
Console::WriteLine( "\nMaximum worker threads: \t{0}"
"\nMaximum completion port threads: {1}", workerThreads.ToString(), portThreads.ToString() );
ThreadPool::GetAvailableThreads( workerThreads, portThreads );
Console::WriteLine( "\nAvailable worker threads: \t{0}"
"\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
ThreadPool::QueueUserWorkItem( gcnew WaitCallback( &ThreadPoolTest::WorkItemMethod ), mainEvent );
// Since ThreadPool threads are background threads,
// wait for the work item to signal before ending main().
mainEvent->WaitOne( 5000, false );
}
using System;
using System.IO;
using System.Security.Permissions;
using System.Threading;
class Test
{
static void Main()
{
AutoResetEvent mainEvent = new AutoResetEvent(false);
int workerThreads;
int portThreads;
ThreadPool.GetMaxThreads(out workerThreads, out portThreads);
Console.WriteLine("\nMaximum worker threads: \t{0}" +
"\nMaximum completion port threads: {1}",
workerThreads, portThreads);
ThreadPool.GetAvailableThreads(out workerThreads,
out portThreads);
Console.WriteLine("\nAvailable worker threads: \t{0}" +
"\nAvailable completion port threads: {1}\n",
workerThreads, portThreads);
ThreadPool.QueueUserWorkItem(new
WaitCallback(ThreadPoolTest.WorkItemMethod), mainEvent);
// Since ThreadPool threads are background threads,
// wait for the work item to signal before ending Main.
mainEvent.WaitOne(5000, false);
}
}
class ThreadPoolTest
{
// Maintains state information to be passed to EndWriteCallback.
// This information allows the callback to end the asynchronous
// write operation and signal when it is finished.
class State
{
public FileStream fStream;
public AutoResetEvent autoEvent;
public State(FileStream fStream, AutoResetEvent autoEvent)
{
this.fStream = fStream;
this.autoEvent = autoEvent;
}
}
ThreadPoolTest() {}
public static void WorkItemMethod(object mainEvent)
{
Console.WriteLine("\nStarting WorkItem.\n");
AutoResetEvent autoEvent = new AutoResetEvent(false);
// Create some data.
const int ArraySize = 10000;
const int BufferSize = 1000;
byte[] byteArray = new Byte[ArraySize];
new Random().NextBytes(byteArray);
// Create two files and two State objects.
FileStream fileWriter1 =
new FileStream(@"C:\Test1@##.dat", FileMode.Create,
FileAccess.ReadWrite, FileShare.ReadWrite,
BufferSize, true);
FileStream fileWriter2 =
new FileStream(@"C:\Test2@##.dat", FileMode.Create,
FileAccess.ReadWrite, FileShare.ReadWrite,
BufferSize, true);
State stateInfo1 = new State(fileWriter1, autoEvent);
State stateInfo2 = new State(fileWriter2, autoEvent);
// Asynchronously write to the files.
fileWriter1.BeginWrite(byteArray, 0, byteArray.Length,
new AsyncCallback(EndWriteCallback), stateInfo1);
fileWriter2.BeginWrite(byteArray, 0, byteArray.Length,
new AsyncCallback(EndWriteCallback), stateInfo2);
// Wait for the callbacks to signal.
autoEvent.WaitOne();
autoEvent.WaitOne();
fileWriter1.Close();
fileWriter2.Close();
Console.WriteLine("\nEnding WorkItem.\n");
// Signal Main that the work item is finished.
((AutoResetEvent)mainEvent).Set();
}
static void EndWriteCallback(IAsyncResult asyncResult)
{
Console.WriteLine("Starting EndWriteCallback.");
State stateInfo = (State)asyncResult.AsyncState;
int workerThreads;
int portThreads;
try
{
ThreadPool.GetAvailableThreads(out workerThreads,
out portThreads);
Console.WriteLine("\nAvailable worker threads: \t{0}" +
"\nAvailable completion port threads: {1}\n",
workerThreads, portThreads);
stateInfo.fStream.EndWrite(asyncResult);
// Sleep so the other thread has a chance to run
// before the current thread ends.
Thread.Sleep(1500);
}
finally
{
// Signal that the current thread is finished.
stateInfo.autoEvent.Set();
Console.WriteLine("Ending EndWriteCallback.");
}
}
}
Imports System.IO
Imports System.Security.Permissions
Imports System.Threading
Public Class Example
Shared Sub Main()
Dim mainEvent As New AutoResetEvent(False)
Dim workerThreads As Integer
Dim portThreads As Integer
ThreadPool.GetMaxThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Maximum worker threads: " & _
vbTab & "{0}" & vbCrLf & "Maximum completion port " & _
"threads: {1}", workerThreads, portThreads)
ThreadPool.GetAvailableThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Available worker threads: " & _
vbTab & "{0}" & vbCrLf & "Available completion port " & _
"threads: {1}" & vbCrLf, workerThreads, portThreads)
ThreadPool.QueueUserWorkItem(AddressOf _
ThreadPoolTest.WorkItemMethod, mainEvent)
' Since ThreadPool threads are background threads,
' wait for the work item to signal before ending Main.
mainEvent.WaitOne(5000, False)
End Sub
End Class
Public Class ThreadPoolTest
' Maintains state information to be passed to EndWriteCallback.
' This information allows the callback to end the asynchronous
' write operation and signal when it is finished.
Class State
Public fStream As FileStream
Public autoEvent As AutoResetEvent
Public Sub New(aFileStream As FileStream, anEvent As AutoResetEvent)
fStream = aFileStream
autoEvent = anEvent
End Sub
End Class
Private Sub New
End Sub
Shared Sub WorkItemMethod(mainEvent As Object)
Console.WriteLine(vbCrLf & "Starting WorkItem." & vbCrLf)
Dim autoEvent As New AutoResetEvent(False)
' Create some data.
Const ArraySize As Integer = 10000
Const BufferSize As Integer = 1000
Dim byteArray As Byte() = New Byte(ArraySize){}
Dim randomGenerator As New Random()
randomGenerator.NextBytes(byteArray)
' Create two files and two State objects.
Dim fileWriter1 As FileStream = _
New FileStream("C:\Test1111.dat", FileMode.Create, _
FileAccess.ReadWrite, FileShare.ReadWrite, _
BufferSize, True)
Dim fileWriter2 As FileStream = _
New FileStream("C:\Test2222.dat", FileMode.Create, _
FileAccess.ReadWrite, FileShare.ReadWrite, _
BufferSize, True)
Dim stateInfo1 As New State(fileWriter1, autoEvent)
Dim stateInfo2 As New State(fileWriter2, autoEvent)
' Asynchronously write to the files.
fileWriter1.BeginWrite(byteArray, 0, byteArray.Length, _
AddressOf EndWriteCallback, stateInfo1)
fileWriter2.BeginWrite(byteArray, 0, byteArray.Length, _
AddressOf EndWriteCallback, stateInfo2)
' Wait for the callbacks to signal.
autoEvent.WaitOne()
autoEvent.WaitOne()
fileWriter1.Close()
fileWriter2.Close()
Console.WriteLine(vbCrLf & "Ending WorkItem." & vbCrLf)
' Signal Main that the work item is finished.
DirectCast(mainEvent, AutoResetEvent).Set()
End Sub
Shared Sub EndWriteCallback(asyncResult As IAsyncResult)
Console.WriteLine("Starting EndWriteCallback.")
Dim stateInfo As State = _
DirectCast(asyncResult.AsyncState, State)
Dim workerThreads As Integer
Dim portThreads As Integer
Try
ThreadPool.GetAvailableThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Available worker " & _
"threads:" & vbTab & "{0}" & vbCrLf & "Available " & _
"completion port threads: {1}" & vbCrLf, _
workerThreads, portThreads)
stateInfo.fStream.EndWrite(asyncResult)
' Sleep so the other thread has a chance to run
' before the current thread ends.
Thread.Sleep(1500)
Finally
' Signal that the current thread is finished.
stateInfo.autoEvent.Set()
Console.WriteLine("Ending EndWriteCallback.")
End Try
End Sub
End Class
Açıklamalar
döndürdüğünde GetMaxThreads , tarafından workerThreads
belirtilen değişken iş parçacığı havuzunda izin verilen en fazla çalışan iş parçacığı sayısını içerir ve tarafından completionPortThreads
belirtilen değişken ise iş parçacığı havuzunda izin verilen zaman uyumsuz G/Ç iş parçacığı sayısı üst sınırını içerir.
herhangi bir zamanda iş parçacığı havuzundaki gerçek iş parçacığı sayısını belirlemek için yöntemini kullanabilirsiniz GetAvailableThreads .
İş parçacığı havuzundaki en fazla çalışan iş parçacığı sayısını ve zaman uyumsuz G/Ç iş parçacığı sayısını ayarlamak için kullanabilirsiniz SetMaxThreads .
Sistem belleğinin izin verdiği sayıda iş parçacığı havuzu isteği kuyruğa alabilirsiniz. İş parçacığı havuzu iş parçacıklarından daha fazla istek varsa, iş parçacığı havuzu iş parçacıkları kullanılabilir duruma gelene kadar ek istekler kuyruğa alınmış olarak kalır.