Lưu ý
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử đăng nhập hoặc thay đổi thư mục.
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử thay đổi thư mục.
Kernels supported for use in computing inner products.
Usage
linearKernel(...)
polynomialKernel(a = NULL, bias = 0, deg = 3, ...)
rbfKernel(gamma = NULL, ...)
sigmoidKernel(gamma = NULL, coef0 = 0, ...)
Arguments
a
The numeric value for a in the term (a*<x,y> + b)^d. If not specified, (1/(number of features) is used.
bias
The numeric value for b in the term (a*<x,y> + b)^d.
deg
The integer value for d in the term (a*<x,y> + b)^d.
gamma
The numeric value for gamma in the expression tanh(gamma*<x,y> + c). If not specified, 1/(number of features) is used.
coef0
The numeric value for c in the expression tanh(gamma*<x,y> + c).
...
Additional arguments passed to the Microsoft ML compute engine.
Details
These helper functions specify the kernel that is used for training in relevant algorithms. The kernels that are supported:
linearKernel: linear kernel.
rbfKernel: radial basis function kernel.
polynomialKernel: polynomial kernel.
sigmoidKernel: sigmoid kernel.
Value
A character string defining the kernel.
Author(s)
Microsoft Corporation Microsoft Technical Support
References
Estimating the Support of a High-Dimensional Distribution
See also
Examples
# Simulate some simple data
set.seed(7)
numRows <- 200
normalData <- data.frame(day = 1:numRows)
normalData$pageViews = runif(numRows, min = 10, max = 1000) + .5 * normalData$day
testData <- data.frame(day = 1:numRows)
# The test data has outliers above 1000
testData$pageViews = runif(numRows, min = 10, max = 1400) + .5 * testData$day
train <- function(kernelFunction, args=NULL) {
model <- rxOneClassSvm(formula = ~pageViews + day, data = normalData,
kernel = kernelFunction(args))
scores <- rxPredict(model, data = testData, writeModelVars = TRUE)
scores$groups = scores$Score > 0
scores
}
display <- function(scores) {
print(sum(scores$groups))
rxLinePlot(pageViews ~ day, data = scores, groups = groups, type = "p",
symbolColors = c("red", "blue"))
}
scores <- list()
scores$rbfKernel <- train(rbfKernel)
scores$linearKernel <- train(linearKernel)
scores$polynomialKernel <- train(polynomialKernel, (a = .2))
scores$sigmoidKernel <- train(sigmoidKernel)
display(scores$rbfKernel)
display(scores$linearKernel)
display(scores$polynomialKernel)
display(scores$sigmoidKernel)