Lưu ý
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử đăng nhập hoặc thay đổi thư mục.
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử thay đổi thư mục.
Loads image data.
Usage
loadImage(vars)
Arguments
vars
A named list of character vectors of input variable names and the name of the output variable. Note that the input variables must be of the same type. For one-to-one mappings between input and output variables, a named character vector can be used.
Details
loadImage loads images from paths.
Value
A maml object defining the transform.
Author(s)
Microsoft Corporation Microsoft Technical Support
Examples
train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)
# Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),
mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),
mlTransformVars = "Path")