Lưu ý
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử đăng nhập hoặc thay đổi thư mục.
Cần có ủy quyền mới truy nhập được vào trang này. Bạn có thể thử thay đổi thư mục.
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer ✅ Azure Monitor ✅ Microsoft Sentinel
Computes the p_value of the Welch-test function
Syntax
welch_test(
mean1,
variance1,
count1,
mean2,
variance2,
count2)
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
mean1 | real or long | ✔️ | The mean (average) value of the first series. |
variance1 | real or long | ✔️ | The variance value of the first series. |
count1 | real or long | ✔️ | The count of values in the first series. |
mean2 | real or long | ✔️ | The mean (average) value of the second series. |
variance2 | real or long | ✔️ | The variance value of the second series. |
count2 | real or long | ✔️ | The count of values in the second series. |
Returns
From Wikipedia:
In statistics, Welch's t-test is a two-sample location test that's used to test the hypothesis that two populations have equal means. Welch's t-test is an adaptation of Student's t-test, and is more reliable when the two samples have unequal variances and unequal sample sizes. These tests are often referred to as "unpaired" or "independent samples" t-tests. The tests are typically applied when the statistical units underlying the two samples being compared are non-overlapping. Welch's t-test is less popular than Student's t-test, and may be less familiar to readers. The test is also called "Welch's unequal variances t-test", or "unequal variances t-test".
Example
// s1, s2 values are from https://en.wikipedia.org/wiki/Welch%27s_t-test
print
s1 = dynamic([27.5, 21.0, 19.0, 23.6, 17.0, 17.9, 16.9, 20.1, 21.9, 22.6, 23.1, 19.6, 19.0, 21.7, 21.4]),
s2 = dynamic([27.1, 22.0, 20.8, 23.4, 23.4, 23.5, 25.8, 22.0, 24.8, 20.2, 21.9, 22.1, 22.9, 20.5, 24.4])
| mv-expand s1 to typeof(double), s2 to typeof(double)
| summarize m1=avg(s1), v1=variance(s1), c1=count(), m2=avg(s2), v2=variance(s2), c2=count()
| extend pValue=welch_test(m1,v1,c1,m2,v2,c2)
// pValue = 0.021