代码解释器允许代理在沙盒环境中编写和执行代码。 这对于数据分析、数学计算、文件处理和其他受益于代码执行的任务非常有用。
注释
代码解释器可用性取决于基础代理提供程序。 有关提供程序特定的支持,请参阅 提供程序概述 。
以下示例演示如何使用代码解释器工具创建代理并读取生成的输出:
使用代码解释器创建代理
using System;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
using Microsoft.Extensions.AI;
// Requires: dotnet add package Microsoft.Agents.AI.OpenAI --prerelease
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT")
?? throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is not set.");
var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT_NAME") ?? "gpt-4o-mini";
// Create an agent with the code interpreter hosted tool
AIAgent agent = new AzureOpenAIClient(new Uri(endpoint), new AzureCliCredential())
.GetChatClient(deploymentName)
.AsAIAgent(
instructions: "You are a helpful assistant that can write and execute Python code.",
tools: [new CodeInterpreterToolDefinition()]);
var response = await agent.RunAsync("Calculate the factorial of 100 using code.");
Console.WriteLine(response);
读取代码输出
// Inspect code interpreter output from the response
foreach (var message in response.Messages)
{
foreach (var content in message.Contents)
{
if (content is CodeInterpreterContent codeContent)
{
Console.WriteLine($"Code:\n{codeContent.Code}");
Console.WriteLine($"Output:\n{codeContent.Output}");
}
}
}
以下示例演示如何使用代码解释器工具创建代理:
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from agent_framework import (
Agent,
Content,
)
from agent_framework.openai import OpenAIResponsesClient
"""
OpenAI Responses Client with Code Interpreter Example
This sample demonstrates using get_code_interpreter_tool() with OpenAI Responses Client
for Python code execution and mathematical problem solving.
"""
async def main() -> None:
"""Example showing how to use the code interpreter tool with OpenAI Responses."""
print("=== OpenAI Responses Agent with Code Interpreter Example ===")
client = OpenAIResponsesClient()
agent = Agent(
client=client,
instructions="You are a helpful assistant that can write and execute Python code to solve problems.",
tools=client.get_code_interpreter_tool(),
)
query = "Use code to get the factorial of 100?"
print(f"User: {query}")
result = await agent.run(query)
print(f"Result: {result}\n")
for message in result.messages:
code_blocks = [c for c in message.contents if c.type == "code_interpreter_tool_call"]
outputs = [c for c in message.contents if c.type == "code_interpreter_tool_result"]
if code_blocks:
code_inputs = code_blocks[0].inputs or []
for content in code_inputs:
if isinstance(content, Content) and content.type == "text":
print(f"Generated code:\n{content.text}")
break
if outputs:
print("Execution outputs:")
for out in outputs[0].outputs or []:
if isinstance(out, Content) and out.type == "text":
print(out.text)
if __name__ == "__main__":
asyncio.run(main())
流式处理代码解释器增量
在对流式处理使用助手客户端时,代码解释器输入可以在最终工具结果之前以增量增量形式到达。 可以在流式更新到达时检查流式处理更新和聚合代码片段:
for Python code execution and mathematical problem solving.
"""
def get_code_interpreter_chunk(chunk: AgentResponseUpdate) -> str | None:
"""Helper method to access code interpreter data."""
if (
isinstance(chunk.raw_representation, ChatResponseUpdate)
and isinstance(chunk.raw_representation.raw_representation, RunStepDeltaEvent)
and isinstance(chunk.raw_representation.raw_representation.delta, RunStepDelta)
and isinstance(chunk.raw_representation.raw_representation.delta.step_details, ToolCallDeltaObject)
and chunk.raw_representation.raw_representation.delta.step_details.tool_calls
):
for tool_call in chunk.raw_representation.raw_representation.delta.step_details.tool_calls:
if (
isinstance(tool_call, CodeInterpreterToolCallDelta)
and isinstance(tool_call.code_interpreter, CodeInterpreter)
query = "What is current datetime?"
print(f"User: {query}")
print("Agent: ", end="", flush=True)
generated_code = ""
async for chunk in agent.run(query, stream=True):
if chunk.text:
print(chunk.text, end="", flush=True)