本教程步骤介绍如何使用需要人工审批的函数工具,该代理是在 Azure OpenAI 聊天完成服务上构建的。
当代理需要任何用户输入(例如批准函数调用)时,这称为人机循环模式。 需要用户输入的代理运行完成时将提供说明用户需要输入哪些内容的响应,而不是提供最终答案。 然后,代理的调用方负责从用户获取所需的输入,并在新代理运行过程中将其传回代理。
先决条件
有关先决条件和安装 NuGet 包,请参阅本教程中的 “创建并运行简单代理 ”步骤。
使用函数工具创建代理
使用函数时,可以为每个函数指示它是否需要人工批准才能执行。
这是通过在AIFunction实例中包装ApprovalRequiredAIFunction实例来完成的。
下面是一个简单的函数工具示例,该工具用于模拟获取给定位置的天气。
using System;
using System.ComponentModel;
using System.Linq;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
using Microsoft.Extensions.AI;
using OpenAI;
[Description("Get the weather for a given location.")]
static string GetWeather([Description("The location to get the weather for.")] string location)
=> $"The weather in {location} is cloudy with a high of 15°C.";
若要创建一个 AIFunction 并将其包装在一个 ApprovalRequiredAIFunction 中,可以执行以下步骤:
AIFunction weatherFunction = AIFunctionFactory.Create(GetWeather);
AIFunction approvalRequiredWeatherFunction = new ApprovalRequiredAIFunction(weatherFunction);
创建代理时,现在可以通过将一个包含工具的列表传递给 AsAIAgent 方法,向代理提供需要审批功能的工具。
AIAgent agent = new AzureOpenAIClient(
new Uri("https://<myresource>.openai.azure.com"),
new AzureCliCredential())
.GetChatClient("gpt-4o-mini")
.AsAIAgent(instructions: "You are a helpful assistant", tools: [approvalRequiredWeatherFunction]);
由于现在有一个需要审批的函数,因此代理可能会响应审批请求,而不是直接执行函数并返回结果。
可以检查任何 FunctionApprovalRequestContent 实例的响应内容,指示代理需要用户批准函数。
AgentSession session = await agent.CreateSessionAsync();
AgentResponse response = await agent.RunAsync("What is the weather like in Amsterdam?", session);
var functionApprovalRequests = response.Messages
.SelectMany(x => x.Contents)
.OfType<FunctionApprovalRequestContent>()
.ToList();
如果有任何函数审批请求,可以在实例的属性FunctionCall中找到FunctionApprovalRequestContent函数调用的详细信息,包括名称和参数。
这可以向用户显示,以便他们可以决定是批准还是拒绝函数调用。
对于此示例,假设有一个请求。
FunctionApprovalRequestContent requestContent = functionApprovalRequests.First();
Console.WriteLine($"We require approval to execute '{requestContent.FunctionCall.Name}'");
用户提供输入后,可以在FunctionApprovalResponseContent上使用CreateResponse方法创建一个FunctionApprovalRequestContent实例。
传递 true 以批准函数调用,或 false 拒绝它。
然后,可以将响应内容与同一会话对象一起传递进新的UserChatMessage,以便从代理中获取结果。
var approvalMessage = new ChatMessage(ChatRole.User, [requestContent.CreateResponse(true)]);
Console.WriteLine(await agent.RunAsync(approvalMessage, session));
每当使用包含人类介入的审批流程的功能工具时,请记住在每次代理运行后检查 FunctionApprovalRequestContent 响应中的实例,直到所有功能调用都获得批准或拒绝。
小窍门
有关完整的可运行示例,请参阅 .NET 示例 。
本教程步骤展示如何使用需要人工批准并与代理配合的函数工具。
当代理需要任何用户输入(例如批准函数调用)时,这称为人机循环模式。 需要用户输入的代理运行完成时将提供说明用户需要输入哪些内容的响应,而不是提供最终答案。 然后,代理的调用方负责从用户获取所需的输入,并在新代理运行过程中将其传回代理。
先决条件
有关先决条件和安装 Python 包,请参阅本教程中的 “创建并运行简单代理 ”步骤。
使用需要审批的函数工具创建代理
使用函数时,可以为每个函数指示它是否需要人工批准才能执行。
通过使用approval_mode修饰器时,将"always_require"参数设置为@tool来完成此操作。
下面是一个简单的函数工具示例,该工具用于模拟获取给定位置的天气。
from typing import Annotated
from agent_framework import tool
@tool
def get_weather(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get the current weather for a given location."""
return f"The weather in {location} is cloudy with a high of 15°C."
若要创建需要审批的函数,可以使用 approval_mode 参数:
@tool(approval_mode="always_require")
def get_weather_detail(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get detailed weather information for a given location."""
return f"The weather in {location} is cloudy with a high of 15°C, humidity 88%."
现在,在创建代理时,您可以通过将包含审批功能的工具列表传递给Agent构造函数,为代理提供此工具。
from agent_framework import Agent
from agent_framework.openai import OpenAIResponsesClient
async with Agent(
chat_client=OpenAIResponsesClient(),
name="WeatherAgent",
instructions="You are a helpful weather assistant.",
tools=[get_weather, get_weather_detail],
) as agent:
# Agent is ready to use
由于现在有一个需要审批的函数,因此代理可能会响应审批请求,而不是直接执行函数并返回结果。 可以检查任何用户输入请求的响应,这表示代理需要用户批准函数。
result = await agent.run("What is the detailed weather like in Amsterdam?")
if result.user_input_requests:
for user_input_needed in result.user_input_requests:
print(f"Function: {user_input_needed.function_call.name}")
print(f"Arguments: {user_input_needed.function_call.arguments}")
如果有任何函数审批请求,可以在用户输入请求的属性中找到 function_call 函数调用的详细信息,包括名称和参数。
这可以向用户显示,以便他们可以决定是批准还是拒绝函数调用。
用户提供输入后,您可以使用create_response方法在用户输入请求上创建响应。
传递 True 以批准函数调用,或 False 拒绝它。
然后,可以通过新的 Message将响应传递到代理,以便从代理中获取结果。
from agent_framework import Message
# Get user approval (in a real application, this would be interactive)
user_approval = True # or False to reject
# Create the approval response
approval_message = Message(
role="user",
contents=[user_input_needed.create_response(user_approval)]
)
# Continue the conversation with the approval
final_result = await agent.run([
"What is the detailed weather like in Amsterdam?",
Message(role="assistant", contents=[user_input_needed]),
approval_message
])
print(final_result.text)
在循环中处理审批
使用需要审批的多个函数调用时,可能需要在一个循环中处理审批,直到所有函数获得批准或拒绝:
async def handle_approvals(query: str, agent) -> str:
"""Handle function call approvals in a loop."""
current_input = query
while True:
result = await agent.run(current_input)
if not result.user_input_requests:
# No more approvals needed, return the final result
return result.text
# Build new input with all context
new_inputs = [query]
for user_input_needed in result.user_input_requests:
print(f"Approval needed for: {user_input_needed.function_call.name}")
print(f"Arguments: {user_input_needed.function_call.arguments}")
# Add the assistant message with the approval request
new_inputs.append(Message(role="assistant", contents=[user_input_needed]))
# Get user approval (in practice, this would be interactive)
user_approval = True # Replace with actual user input
# Add the user's approval response
new_inputs.append(
Message(role="user", contents=[user_input_needed.create_response(user_approval)])
)
# Continue with all the context
current_input = new_inputs
# Usage
result_text = await handle_approvals("Get detailed weather for Seattle and Portland", agent)
print(result_text)
每当使用具有人工审核流程的函数工具时,请记住在每次代理执行后,在响应中检查用户输入请求,直到所有函数调用都获得批准或被拒绝。
完整示例
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from random import randrange
from typing import TYPE_CHECKING, Annotated, Any
from agent_framework import Agent, AgentResponse, Message, tool
from agent_framework.openai import OpenAIResponsesClient
if TYPE_CHECKING:
from agent_framework import SupportsAgentRun
"""
Demonstration of a tool with approvals.
This sample demonstrates using AI functions with user approval workflows.
It shows how to handle function call approvals without using threads.
"""
conditions = ["sunny", "cloudy", "raining", "snowing", "clear"]
# NOTE: approval_mode="never_require" is for sample brevity. Use "always_require" in production; see samples/02-agents/tools/function_tool_with_approval.py and samples/02-agents/tools/function_tool_with_approval_and_sessions.py.
@tool(approval_mode="never_require")
def get_weather(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get the current weather for a given location."""
# Simulate weather data
return f"The weather in {location} is {conditions[randrange(0, len(conditions))]} and {randrange(-10, 30)}°C."
# Define a simple weather tool that requires approval
@tool(approval_mode="always_require")
def get_weather_detail(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get the current weather for a given location."""
# Simulate weather data
return (
f"The weather in {location} is {conditions[randrange(0, len(conditions))]} and {randrange(-10, 30)}°C, "
"with a humidity of 88%. "
f"Tomorrow will be {conditions[randrange(0, len(conditions))]} with a high of {randrange(-10, 30)}°C."
)
async def handle_approvals(query: str, agent: "SupportsAgentRun") -> AgentResponse:
"""Handle function call approvals.
When we don't have a thread, we need to ensure we include the original query,
the approval request, and the approval response in each iteration.
"""
result = await agent.run(query)
while len(result.user_input_requests) > 0:
# Start with the original query
new_inputs: list[Any] = [query]
for user_input_needed in result.user_input_requests:
print(
f"\nUser Input Request for function from {agent.name}:"
f"\n Function: {user_input_needed.function_call.name}"
f"\n Arguments: {user_input_needed.function_call.arguments}"
)
# Add the assistant message with the approval request
new_inputs.append(Message("assistant", [user_input_needed]))
# Get user approval
user_approval = await asyncio.to_thread(input, "\nApprove function call? (y/n): ")
# Add the user's approval response
new_inputs.append(
Message("user", [user_input_needed.to_function_approval_response(user_approval.lower() == "y")])
)
# Run again with all the context
result = await agent.run(new_inputs)
return result
async def handle_approvals_streaming(query: str, agent: "SupportsAgentRun") -> None:
"""Handle function call approvals with streaming responses.
When we don't have a thread, we need to ensure we include the original query,
the approval request, and the approval response in each iteration.
"""
current_input: str | list[Any] = query
has_user_input_requests = True
while has_user_input_requests:
has_user_input_requests = False
user_input_requests: list[Any] = []
# Stream the response
async for chunk in agent.run(current_input, stream=True):
if chunk.text:
print(chunk.text, end="", flush=True)
# Collect user input requests from the stream
if chunk.user_input_requests:
user_input_requests.extend(chunk.user_input_requests)
if user_input_requests:
has_user_input_requests = True
# Start with the original query
new_inputs: list[Any] = [query]
for user_input_needed in user_input_requests:
print(
f"\n\nUser Input Request for function from {agent.name}:"
f"\n Function: {user_input_needed.function_call.name}"
f"\n Arguments: {user_input_needed.function_call.arguments}"
)
# Add the assistant message with the approval request
new_inputs.append(Message("assistant", [user_input_needed]))
# Get user approval
user_approval = await asyncio.to_thread(input, "\nApprove function call? (y/n): ")
# Add the user's approval response
new_inputs.append(
Message("user", [user_input_needed.to_function_approval_response(user_approval.lower() == "y")])
)
# Update input with all the context for next iteration
current_input = new_inputs
async def run_weather_agent_with_approval(stream: bool) -> None:
"""Example showing AI function with approval requirement."""
print(f"\n=== Weather Agent with Approval Required ({'Streaming' if stream else 'Non-Streaming'}) ===\n")
async with Agent(
client=OpenAIResponsesClient(),
name="WeatherAgent",
instructions=("You are a helpful weather assistant. Use the get_weather tool to provide weather information."),
tools=[get_weather, get_weather_detail],
) as agent:
query = "Can you give me an update of the weather in LA and Portland and detailed weather for Seattle?"
print(f"User: {query}")
if stream:
print(f"\n{agent.name}: ", end="", flush=True)
await handle_approvals_streaming(query, agent)
print()
else:
result = await handle_approvals(query, agent)
print(f"\n{agent.name}: {result}\n")
async def main() -> None:
print("=== Demonstration of a tool with approvals ===\n")
await run_weather_agent_with_approval(stream=False)
await run_weather_agent_with_approval(stream=True)
if __name__ == "__main__":
asyncio.run(main())
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from random import randrange
from typing import TYPE_CHECKING, Annotated, Any
from agent_framework import Agent, AgentResponse, Message, tool
from agent_framework.openai import OpenAIResponsesClient
if TYPE_CHECKING:
from agent_framework import SupportsAgentRun
"""
Demonstration of a tool with approvals.
This sample demonstrates using AI functions with user approval workflows.
It shows how to handle function call approvals without using threads.
"""
conditions = ["sunny", "cloudy", "raining", "snowing", "clear"]
# NOTE: approval_mode="never_require" is for sample brevity. Use "always_require" in production; see samples/02-agents/tools/function_tool_with_approval.py and samples/02-agents/tools/function_tool_with_approval_and_sessions.py.
@tool(approval_mode="never_require")
def get_weather(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get the current weather for a given location."""
# Simulate weather data
return f"The weather in {location} is {conditions[randrange(0, len(conditions))]} and {randrange(-10, 30)}°C."
# Define a simple weather tool that requires approval
@tool(approval_mode="always_require")
def get_weather_detail(location: Annotated[str, "The city and state, e.g. San Francisco, CA"]) -> str:
"""Get the current weather for a given location."""
# Simulate weather data
return (
f"The weather in {location} is {conditions[randrange(0, len(conditions))]} and {randrange(-10, 30)}°C, "
"with a humidity of 88%. "
f"Tomorrow will be {conditions[randrange(0, len(conditions))]} with a high of {randrange(-10, 30)}°C."
)
async def handle_approvals(query: str, agent: "SupportsAgentRun") -> AgentResponse:
"""Handle function call approvals.
When we don't have a thread, we need to ensure we include the original query,
the approval request, and the approval response in each iteration.
"""
result = await agent.run(query)
while len(result.user_input_requests) > 0:
# Start with the original query
new_inputs: list[Any] = [query]
for user_input_needed in result.user_input_requests:
print(
f"\nUser Input Request for function from {agent.name}:"
f"\n Function: {user_input_needed.function_call.name}"
f"\n Arguments: {user_input_needed.function_call.arguments}"
)
# Add the assistant message with the approval request
new_inputs.append(Message("assistant", [user_input_needed]))
# Get user approval
user_approval = await asyncio.to_thread(input, "\nApprove function call? (y/n): ")
# Add the user's approval response
new_inputs.append(
Message("user", [user_input_needed.to_function_approval_response(user_approval.lower() == "y")])
)
# Run again with all the context
result = await agent.run(new_inputs)
return result
async def handle_approvals_streaming(query: str, agent: "SupportsAgentRun") -> None:
"""Handle function call approvals with streaming responses.
When we don't have a thread, we need to ensure we include the original query,
the approval request, and the approval response in each iteration.
"""
current_input: str | list[Any] = query
has_user_input_requests = True
while has_user_input_requests:
has_user_input_requests = False
user_input_requests: list[Any] = []
# Stream the response
async for chunk in agent.run(current_input, stream=True):
if chunk.text:
print(chunk.text, end="", flush=True)
# Collect user input requests from the stream
if chunk.user_input_requests:
user_input_requests.extend(chunk.user_input_requests)
if user_input_requests:
has_user_input_requests = True
# Start with the original query
new_inputs: list[Any] = [query]
for user_input_needed in user_input_requests:
print(
f"\n\nUser Input Request for function from {agent.name}:"
f"\n Function: {user_input_needed.function_call.name}"
f"\n Arguments: {user_input_needed.function_call.arguments}"
)
# Add the assistant message with the approval request
new_inputs.append(Message("assistant", [user_input_needed]))
# Get user approval
user_approval = await asyncio.to_thread(input, "\nApprove function call? (y/n): ")
# Add the user's approval response
new_inputs.append(
Message("user", [user_input_needed.to_function_approval_response(user_approval.lower() == "y")])
)
# Update input with all the context for next iteration
current_input = new_inputs
async def run_weather_agent_with_approval(stream: bool) -> None:
"""Example showing AI function with approval requirement."""
print(f"\n=== Weather Agent with Approval Required ({'Streaming' if stream else 'Non-Streaming'}) ===\n")
async with Agent(
client=OpenAIResponsesClient(),
name="WeatherAgent",
instructions=("You are a helpful weather assistant. Use the get_weather tool to provide weather information."),
tools=[get_weather, get_weather_detail],
) as agent:
query = "Can you give me an update of the weather in LA and Portland and detailed weather for Seattle?"
print(f"User: {query}")
if stream:
print(f"\n{agent.name}: ", end="", flush=True)
await handle_approvals_streaming(query, agent)
print()
else:
result = await handle_approvals(query, agent)
print(f"\n{agent.name}: {result}\n")
async def main() -> None:
print("=== Demonstration of a tool with approvals ===\n")
await run_weather_agent_with_approval(stream=False)
await run_weather_agent_with_approval(stream=True)
if __name__ == "__main__":
asyncio.run(main())