返回数组的最小值。
Syntax
from pyspark.sql import functions as sf
sf.array_min(col)
参数
| 参数 | 类型 | Description |
|---|---|---|
col |
pyspark.sql.Column 或 str |
表示数组的列或表达式的名称。 |
退货
pyspark.sql.Column:包含每个数组的最小值的新列。
例子
示例 1:整数数组的基本用法
from pyspark.sql import functions as sf
df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| 1|
| -1|
+---------------+
示例 2:字符串数组的用法
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 'banana', 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| apple|
+---------------+
示例 3:混合类型数组的用法
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 1, 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| 1|
+---------------+
示例 4:数组数组的用法
from pyspark.sql import functions as sf
df = spark.createDataFrame([([[2, 1], [3, 4]],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| [2, 1]|
+---------------+
示例 5:使用空数组
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| NULL|
+---------------+