返回一个数组,其中包含给定元素作为原始数组的第一个元素和其余元素。
Syntax
from pyspark.sql import functions as sf
sf.array_prepend(col, value)
参数
| 参数 | 类型 | Description |
|---|---|---|
col |
pyspark.sql.Column 或 str |
包含数组的列的名称 |
value |
任意 | 文本值或 Column 表达式。 |
退货
pyspark.sql.Column:前面有给定值的数组。
例子
示例 1:将列值追加到数组列
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2="c")])
df.select(sf.array_prepend(df.c1, df.c2)).show()
+---------------------+
|array_prepend(c1, c2)|
+---------------------+
| [c, b, a, c]|
+---------------------+
示例 2:将数值追加到数组列
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
| [4, 1, 2, 3]|
+----------------------+
示例 3:将 null 值追加到数组列
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, None)).show()
+-------------------------+
|array_prepend(data, NULL)|
+-------------------------+
| [NULL, 1, 2, 3]|
+-------------------------+
示例 4:将值追加到 NULL 数组列
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([(None,)], schema=schema)
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
| NULL|
+----------------------+
示例 5:将值追加到空数组
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_prepend(df.data, 1)).show()
+----------------------+
|array_prepend(data, 1)|
+----------------------+
| [1]|
+----------------------+