通过


call_function

调用 SQL 函数。 支持 Spark Connect。

Syntax

from pyspark.databricks.sql import functions as dbf

dbf.call_function(funcName=<funcName>, *cols)

参数

参数 类型 Description
funcName str SQL 标识符语法后面的函数名称(可以引用,可以限定)。
cols pyspark.sql.Columnstr 要在函数中使用的列名或列。

退货

pyspark.sql.Column:执行函数的结果。

例子

示例 1:调用包含整数列的函数

from pyspark.databricks.sql import functions as dbf
from pyspark.sql.types import IntegerType, StringType
df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "c")],["id", "name"])
_ = spark.udf.register("intX2", lambda i: i * 2, IntegerType())
df.select(dbf.call_function("intX2", "id")).show()
+---------+
|intX2(id)|
+---------+
|        2|
|        4|
|        6|
+---------+

示例 2:使用字符串列调用函数

from pyspark.databricks.sql import functions as dbf
from pyspark.sql.types import StringType
df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "c")],["id", "name"])
_ = spark.udf.register("strX2", lambda s: s * 2, StringType())
df.select(dbf.call_function("strX2", dbf.col("name"))).show()
+-----------+
|strX2(name)|
+-----------+
|         aa|
|         bb|
|         cc|
+-----------+

示例 3:调用内置函数

from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "c")],["id", "name"])
df.select(dbf.call_function("avg", dbf.col("id"))).show()
+-------+
|avg(id)|
+-------+
|    2.0|
+-------+

示例 4:调用自定义 SQL 函数

from pyspark.databricks.sql import functions as dbf
_ = spark.sql("CREATE FUNCTION custom_avg AS 'test.org.apache.spark.sql.MyDoubleAvg'")

df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "c")],["id", "name"])
df.select(dbf.call_function("custom_avg", dbf.col("id"))).show()

+------------------------------------+
|spark_catalog.default.custom_avg(id)|
+------------------------------------+
|                               102.0|
+------------------------------------+

示例 5:调用具有完全限定名称的自定义 SQL 函数

from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "c")],["id", "name"])
df.select(dbf.call_function("spark_catalog.default.custom_avg", dbf.col("id"))).show()
+------------------------------------+
|spark_catalog.default.custom_avg(id)|
+------------------------------------+
|                               102.0|
+------------------------------------+