chi_squared_distribution 类

生成卡方分布。

语法

template<class RealType = double>
class chi_squared_distribution {
public:
    // types
    typedef RealType result_type;
    struct param_type;

    // constructor and reset functions
    explicit chi_squared_distribution(RealType n = 1);
    explicit chi_squared_distribution(const param_type& parm);
    void reset();

    // generating functions
    template <class URNG>
    result_type operator()(URNG& gen);
    template <class URNG>
    result_type operator()(URNG& gen, const param_type& parm);

    // property functions
    RealType n() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
};

参数

RealType
浮点结果类型,默认为 double。 有关可能的类型,请参阅 <random>

URNG
均匀随机数生成器引擎。 有关可能的类型,请参阅 <random>

备注

此类模板描述了生成用户指定的浮点类型或根据卡方分布分配的 double 类型(如果未提供任何内容)的值的分配。 下表链接到有关各个成员的文章。

chi_squared_distribution
param_type

属性函数 n() 将返回存储的分布参数 n 的值。

属性成员 param() 将设置或返回 param_type 存储的分布参数包。

min()max() 成员函数将分别返回最小可能结果和最大可能结果。

reset() 成员函数将放弃所有缓存的值,使下一个对 operator() 的调用的结果不取决于在调用之前从引擎获得的任何值。

operator() 成员函数将根据 URNG 引擎,从当前参数包或指定参数包返回下一个生成的值。

有关分布类及其成员的详细信息,请参阅 <random>

有关卡方分布的详细信息,请参阅 Wolfram MathWorld 文章卡方分布

示例

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const double n, const int s) {

    // uncomment to use a non-deterministic generator
    //    std::random_device gen;
    std::mt19937 gen(1701);

    std::chi_squared_distribution<> distr(n);

    std::cout << std::endl;
    std::cout << "min() == " << distr.min() << std::endl;
    std::cout << "max() == " << distr.max() << std::endl;
    std::cout << "n() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.n() << std::endl;

    // generate the distribution as a histogram
    std::map<double, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Distribution for " << s << " samples:" << std::endl;
    int counter = 0;
    for (const auto& elem : histogram) {
        std::cout << std::fixed << std::setw(11) << ++counter << ": "
            << std::setw(14) << std::setprecision(10) << elem.first << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    double n_dist = 0.5;
    int samples = 10;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter a floating point value for the \'n\' distribution parameter (must be greater than zero): ";
    std::cin >> n_dist;
    std::cout << "Enter an integer value for the sample count: ";
    std::cin >> samples;

    test(n_dist, samples);
}

首次运行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .5
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 0.5000000000
Distribution for 10 samples:
    1: 0.0007625595
    2: 0.0016895062
    3: 0.0058683478
    4: 0.0189647765
    5: 0.0556619371
    6: 0.1448191353
    7: 0.1448245325
    8: 0.1903494379
    9: 0.9267525768
    10: 1.5429743723

第二次运行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .3333
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 0.3333000000
Distribution for 10 samples:
    1: 0.0000148725
    2: 0.0000490528
    3: 0.0003175988
    4: 0.0018454535
    5: 0.0092808795
    6: 0.0389540735
    7: 0.0389562514
    8: 0.0587028468
    9: 0.6183666639
    10: 1.3552086624

第三次运行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1000
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 1000.0000000000
Distribution for 10 samples:
    1: 958.5284624473
    2: 958.7882787809
    3: 963.0667684792
    4: 987.9638091514
    5: 1016.2433493745
    6: 1021.9337111110
    7: 1021.9723046240
    8: 1035.7622110505
    9: 1043.8725156645
    10: 1054.7051509381

要求

标头:<random>

命名空间: std

chi_squared_distribution::chi_squared_distribution

构造分布。

explicit chi_squared_distribution(result_type n = 1.0);
explicit chi_squared_distribution(const param_type& parm);

参数

n
n 分布参数。

parm
用于构造分布的参数结构。

注解

前提条件0.0 < n

第一个构造函数将构造一个对象,该对象存储的 n 值保留值 n

第二个构造函数将构造一个从 parm 初始化其存储的参数的对象。 通过调用 param() 成员函数,可获取和设置当前的现有分发参数。

chi_squared_distribution::param_type

存储分布的参数。

struct param_type {
   typedef chi_squared_distribution<result_type> distribution_type;
   param_type(result_type n = 1.0);
   result_type n() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

参数

n
n 分布参数。

right
要与它进行比较的 param_type 对象。

注解

前提条件0.0 < n

在实例化时,可将此结构传递给分布的类构造函数、传递给 param() 成员函数以设置现有分布的存储参数,并传递给 operator() 以代替存储参数使用。

另请参阅

<random>