FastTreeTweedieTrainer 类

定义

用于 IEstimator<TTransformer> 使用 Tweedie 损失函数训练决策树回归模型。 此训练器是波森、复合波森和伽马回归的通用化。

public sealed class FastTreeTweedieTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>,Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>
type FastTreeTweedieTrainer = class
    inherit BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
Public NotInheritable Class FastTreeTweedieTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeTweedieTrainer.Options, RegressionPredictionTransformer(Of FastTreeTweedieModelParameters), FastTreeTweedieModelParameters)
继承

注解

若要创建此训练程序,请使用 FastTreeTweedieFastTreeTweedie (选项)

输入和输出列

输入标签列数据必须为 Single。 输入特征列数据必须是已知大小的向量 Single

该训练程序输出以下列:

输出列名称 列名称 说明
Score Single 模型预测的未绑定分数。

训练器特征

机器学习任务 回归
规范化是否需要?
是否需要缓存?
除 Microsoft.ML 外所需的 NuGet Microsoft.ML.FastTree
可导出到 ONNX

训练算法详细信息

Tweedie 助推模型遵循通过杨、泉和祖的梯度Tree-Boosted特威迪复合波松模型在保险保费预测中建立的数学。 有关渐变提升的简介和详细信息,请参阅: 维基百科:梯度提升 (渐变树提升) 贪婪函数近似值:梯度提升机

有关使用示例的链接,请查看“另请参阅”部分。

字段

FeatureColumn

训练程序期望的功能列。

(继承自 TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

排名训练器期望的可选 groupID 列。

(继承自 TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

训练程序期望的标签列。 可以是 null,指示标签不用于训练。

(继承自 TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

训练器期望的权重列。 可以 null,这表示权重不用于训练。

(继承自 TrainerEstimatorBase<TTransformer,TModel>)

属性

Info

用于 IEstimator<TTransformer> 使用 Tweedie 损失函数训练决策树回归模型。 此训练器是波森、复合波森和伽马回归的通用化。

(继承自 FastTreeTrainerBase<TOptions,TTransformer,TModel>)

方法

Fit(IDataView, IDataView)

使用训练和验证数据训练一个 FastTreeTweedieTrainer 返回 a RegressionPredictionTransformer<TModel>.

Fit(IDataView)

火车并返回一个 ITransformer

(继承自 TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

用于 IEstimator<TTransformer> 使用 Tweedie 损失函数训练决策树回归模型。 此训练器是波森、复合波森和伽马回归的通用化。

(继承自 TrainerEstimatorBase<TTransformer,TModel>)

扩展方法

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

将“缓存检查点”追加到估算器链。 这将确保针对缓存的数据训练下游估算器。 在执行多个数据传递的训练器之前,拥有缓存检查点会很有帮助。

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

给定估算器后,返回将调用委托的 Fit(IDataView) 包装对象。 估算器通常必须返回有关拟合情况的信息,这就是为什么 Fit(IDataView) 该方法返回特定类型化对象的原因,而不仅仅是常规 ITransformer对象。 但是,同时, IEstimator<TTransformer> 通常形成为包含许多对象的管道,因此,我们可能需要通过 EstimatorChain<TLastTransformer> 估算器链生成一系列估算器,以便我们要获取转换器的估算器被埋在此链中的某个位置。 对于这种情况,我们可以通过此方法附加调用一次将调用的委托。

适用于

另请参阅