SymbolicSgdLogisticRegressionBinaryTrainer 类
定义
重要
一些信息与预发行产品相关,相应产品在发行之前可能会进行重大修改。 对于此处提供的信息,Microsoft 不作任何明示或暗示的担保。
使用 IEstimator<TTransformer> 通过符号随机梯度下降训练的线性二元分类模型预测目标。
public sealed class SymbolicSgdLogisticRegressionBinaryTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>,Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>
type SymbolicSgdLogisticRegressionBinaryTrainer = class
inherit TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>, CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>
Public NotInheritable Class SymbolicSgdLogisticRegressionBinaryTrainer
Inherits TrainerEstimatorBase(Of BinaryPredictionTransformer(Of CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator)), CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator))
- 继承
-
TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>,CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>SymbolicSgdLogisticRegressionBinaryTrainer
注解
若要创建此训练程序,请使用 SymbolicStochasticGradientDescent 或 SymbolicStochasticGradientDescent (选项) 。
输入和输出列
输入标签列数据必须为 Boolean。 输入特征列数据必须是已知大小的向量 Single。
该训练程序输出以下列:
输出列名称 | 列名称 | 说明 | |
---|---|---|---|
Score |
Single | 模型计算的未绑定分数。 | |
PredictedLabel |
Boolean | 预测的标签,基于分数符号。 负分数映射到 false ,正分数映射到 true 。 |
|
Probability |
Single | 通过校准具有 true 作为标签的分数来计算的概率。 概率值在 [0, 1] 范围内。 |
训练器特征
机器学习任务 | 二元分类 |
规范化是否需要? | 是 |
是否需要缓存? | 否 |
除 Microsoft.ML 外所需的 NuGet | Microsoft.ML.Mkl.Components |
可导出到 ONNX | 是 |
训练算法详细信息
符号随机梯度下降是一种算法,通过找到分离的超平面来做出预测。 例如,如果特征值$f 0、f1,..., f_{D-1}$,则通过确定点落入的超平面的一侧来给出预测。 这与特征加权和的符号相同,即 $\sum_{i = 0}^{D-1} (w_i * f_i) + b$,其中$w_0,w_1,..., w_{D-1}$ 是算法计算的权重,$b$ 是算法计算的偏差。
虽然大多数符号随机梯度下降算法本质上是按顺序排列的 - 在每个步骤中,当前示例的处理取决于从前面的示例中学到的参数。 此算法在单独的线程和概率模型 Cobminer 中训练本地模型,使本地模型能够与顺序符号随机梯度下降产生的结果相同,预期。
有关详细信息,请参阅 并行随机梯度下降与声音组合器。
有关使用示例的链接,请查看“另请参阅”部分。
字段
FeatureColumn |
训练程序期望的功能列。 (继承自 TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
训练程序期望的标签列。 可以是 |
WeightColumn |
训练器期望的权重列。 可以 |
属性
Info |
使用 IEstimator<TTransformer> 通过符号随机梯度下降训练的线性二元分类模型预测目标。 |
方法
Fit(IDataView, LinearModelParameters) |
继续训练 SymbolicSgdLogisticRegressionBinaryTrainer 已训练 |
Fit(IDataView) |
火车并返回一个 ITransformer。 (继承自 TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
使用 IEstimator<TTransformer> 通过符号随机梯度下降训练的线性二元分类模型预测目标。 (继承自 TrainerEstimatorBase<TTransformer,TModel>) |
扩展方法
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
将“缓存检查点”追加到估算器链。 这将确保针对缓存的数据训练下游估算器。 在执行多个数据传递的训练器之前,拥有缓存检查点会很有帮助。 |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
给定估算器后,返回将调用委托的 Fit(IDataView) 包装对象。 估算器通常必须返回有关拟合情况的信息,这就是为什么 Fit(IDataView) 该方法返回特定类型化对象的原因,而不仅仅是常规 ITransformer对象。 但是,同时, IEstimator<TTransformer> 通常形成为包含许多对象的管道,因此,我们可能需要通过 EstimatorChain<TLastTransformer> 估算器链生成一系列估算器,以便我们要获取转换器的估算器被埋在此链中的某个位置。 对于这种情况,我们可以通过此方法附加调用一次将调用的委托。 |
适用于
另请参阅
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)
- SymbolicSgdLogisticRegressionBinaryTrainer.Options