Encoding.GetCharCount 方法
定义
重要
一些信息与预发行产品相关,相应产品在发行之前可能会进行重大修改。 对于此处提供的信息,Microsoft 不作任何明示或暗示的担保。
在派生类中重写时,计算对字节序列进行解码所产生的字符数。
重载
GetCharCount(Byte[]) |
在派生类中重写时,计算对指定字节数组中的所有字节进行解码所产生的字符数。 |
GetCharCount(ReadOnlySpan<Byte>) |
在派生类中重写时,计算对提供的只读字节范围进行解码所产生的字符数。 |
GetCharCount(Byte*, Int32) |
在派生类中重写时,计算对字节序列(从指定的字节指针开始)进行解码所产生的字符数。 |
GetCharCount(Byte[], Int32, Int32) |
在派生类中重写时,计算对字节序列(从指定字节数组开始)进行解码所产生的字符数。 |
GetCharCount(Byte[])
- Source:
- Encoding.cs
- Source:
- Encoding.cs
- Source:
- Encoding.cs
在派生类中重写时,计算对指定字节数组中的所有字节进行解码所产生的字符数。
public:
virtual int GetCharCount(cli::array <System::Byte> ^ bytes);
public virtual int GetCharCount (byte[] bytes);
abstract member GetCharCount : byte[] -> int
override this.GetCharCount : byte[] -> int
Public Overridable Function GetCharCount (bytes As Byte()) As Integer
参数
- bytes
- Byte[]
包含要解码的字节序列的字节数组。
返回
对指定字节序列进行解码所产生的字符数。
例外
bytes
为 null
。
发生回退(有关详细信息,请参阅采用 .NET 的字符编码)
-和-
示例
下面的示例将字符串编码为一个字节数组,然后将这些字节解码为一个字符数组。
using namespace System;
using namespace System::Text;
void PrintCountsAndChars( array<Byte>^bytes, Encoding^ enc );
int main()
{
// Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Encoding^ u32LE = Encoding::GetEncoding( "utf-32" );
Encoding^ u32BE = Encoding::GetEncoding( "utf-32BE" );
// Use a string containing the following characters:
// Latin Small Letter Z (U+007A)
// Latin Small Letter A (U+0061)
// Combining Breve (U+0306)
// Latin Small Letter AE With Acute (U+01FD)
// Greek Small Letter Beta (U+03B2)
String^ myStr = "za\u0306\u01FD\u03B2";
// Encode the string using the big-endian byte order.
array<Byte>^barrBE = gcnew array<Byte>(u32BE->GetByteCount( myStr ));
u32BE->GetBytes( myStr, 0, myStr->Length, barrBE, 0 );
// Encode the string using the little-endian byte order.
array<Byte>^barrLE = gcnew array<Byte>(u32LE->GetByteCount( myStr ));
u32LE->GetBytes( myStr, 0, myStr->Length, barrLE, 0 );
// Get the char counts, and decode the byte arrays.
Console::Write( "BE array with BE encoding : " );
PrintCountsAndChars( barrBE, u32BE );
Console::Write( "LE array with LE encoding : " );
PrintCountsAndChars( barrLE, u32LE );
}
void PrintCountsAndChars( array<Byte>^bytes, Encoding^ enc )
{
// Display the name of the encoding used.
Console::Write( "{0,-25} :", enc );
// Display the exact character count.
int iCC = enc->GetCharCount( bytes );
Console::Write( " {0,-3}", iCC );
// Display the maximum character count.
int iMCC = enc->GetMaxCharCount( bytes->Length );
Console::Write( " {0,-3} :", iMCC );
// Decode the bytes and display the characters.
array<Char>^chars = enc->GetChars( bytes );
Console::WriteLine( chars );
}
/*
This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
BE array with BE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
LE array with LE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
*/
using System;
using System.Text;
public class SamplesEncoding {
public static void Main() {
// Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Encoding u32LE = Encoding.GetEncoding( "utf-32" );
Encoding u32BE = Encoding.GetEncoding( "utf-32BE" );
// Use a string containing the following characters:
// Latin Small Letter Z (U+007A)
// Latin Small Letter A (U+0061)
// Combining Breve (U+0306)
// Latin Small Letter AE With Acute (U+01FD)
// Greek Small Letter Beta (U+03B2)
String myStr = "za\u0306\u01FD\u03B2";
// Encode the string using the big-endian byte order.
byte[] barrBE = new byte[u32BE.GetByteCount( myStr )];
u32BE.GetBytes( myStr, 0, myStr.Length, barrBE, 0 );
// Encode the string using the little-endian byte order.
byte[] barrLE = new byte[u32LE.GetByteCount( myStr )];
u32LE.GetBytes( myStr, 0, myStr.Length, barrLE, 0 );
// Get the char counts, and decode the byte arrays.
Console.Write( "BE array with BE encoding : " );
PrintCountsAndChars( barrBE, u32BE );
Console.Write( "LE array with LE encoding : " );
PrintCountsAndChars( barrLE, u32LE );
}
public static void PrintCountsAndChars( byte[] bytes, Encoding enc ) {
// Display the name of the encoding used.
Console.Write( "{0,-25} :", enc.ToString() );
// Display the exact character count.
int iCC = enc.GetCharCount( bytes );
Console.Write( " {0,-3}", iCC );
// Display the maximum character count.
int iMCC = enc.GetMaxCharCount( bytes.Length );
Console.Write( " {0,-3} :", iMCC );
// Decode the bytes and display the characters.
char[] chars = enc.GetChars( bytes );
Console.WriteLine( chars );
}
}
/*
This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
BE array with BE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
LE array with LE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
*/
Imports System.Text
Public Class SamplesEncoding
Public Shared Sub Main()
' Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Dim u32LE As Encoding = Encoding.GetEncoding("utf-32")
Dim u32BE As Encoding = Encoding.GetEncoding("utf-32BE")
' Use a string containing the following characters:
' Latin Small Letter Z (U+007A)
' Latin Small Letter A (U+0061)
' Combining Breve (U+0306)
' Latin Small Letter AE With Acute (U+01FD)
' Greek Small Letter Beta (U+03B2)
Dim myStr As String = "za" & ChrW(&H0306) & ChrW(&H01FD) & ChrW(&H03B2)
' Encode the string using the big-endian byte order.
' NOTE: In VB.NET, arrays contain one extra element by default.
' The following line creates the array with the exact number of elements required.
Dim barrBE(u32BE.GetByteCount(myStr) - 1) As Byte
u32BE.GetBytes(myStr, 0, myStr.Length, barrBE, 0)
' Encode the string using the little-endian byte order.
' NOTE: In VB.NET, arrays contain one extra element by default.
' The following line creates the array with the exact number of elements required.
Dim barrLE(u32LE.GetByteCount(myStr) - 1) As Byte
u32LE.GetBytes(myStr, 0, myStr.Length, barrLE, 0)
' Get the char counts, and decode the byte arrays.
Console.Write("BE array with BE encoding : ")
PrintCountsAndChars(barrBE, u32BE)
Console.Write("LE array with LE encoding : ")
PrintCountsAndChars(barrLE, u32LE)
End Sub
Public Shared Sub PrintCountsAndChars(bytes() As Byte, enc As Encoding)
' Display the name of the encoding used.
Console.Write("{0,-25} :", enc.ToString())
' Display the exact character count.
Dim iCC As Integer = enc.GetCharCount(bytes)
Console.Write(" {0,-3}", iCC)
' Display the maximum character count.
Dim iMCC As Integer = enc.GetMaxCharCount(bytes.Length)
Console.Write(" {0,-3} :", iMCC)
' Decode the bytes and display the characters.
Dim chars As Char() = enc.GetChars(bytes)
Console.WriteLine(chars)
End Sub
End Class
'This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
'
'BE array with BE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
'LE array with LE encoding : System.Text.UTF32Encoding : 5 12 :zăǽβ
注解
若要计算存储所生成的字符所需的确切数组大小 GetChars(Byte[]) ,应使用 GetCharCount(Byte[]) 方法。 若要计算最大数组大小,应使用 GetMaxCharCount(Int32) 方法。 GetCharCount(Byte[])方法通常允许分配较少的内存,而 GetMaxCharCount 方法的执行速度通常更快。
GetCharCount(Byte[])方法确定多少个字符会导致对一个字节序列进行解码,并且该 GetChars(Byte[]) 方法执行实际解码。 Encoding.GetChars方法需要分离转换,这与方法不同, Decoder.GetChars 后者处理单个输入流上的多个传递。
支持和的多个版本 GetCharCountGetChars 。 下面是有关使用这些方法的一些编程注意事项:
您的应用程序可能需要从代码页解码多个输入字节,并使用多个调用处理这些字节。 在这种情况下,可能需要在调用之间维护状态。
如果你的应用程序处理字符串输出,则应使用 GetString 方法。 由于此方法必须检查字符串长度并分配一个缓冲区,因此它稍慢一些,但生成的 String 类型是首选的。
的字节版本 GetChars(Byte*, Int32, Char*, Int32) 允许一些快速的方法,尤其是对大缓冲区的多个调用。 但请记住,此方法版本有时不安全,因为指针是必需的。
如果你的应用程序必须转换大量数据,则应重新使用输出缓冲区。 在这种情况下, GetChars(Byte[], Int32, Int32, Char[], Int32) 支持输出字符缓冲区的版本是最佳选择。
请考虑使用 Decoder.Convert 方法而不是 GetCharCount 。 转换方法尽可能多地转换数据,如果输出缓冲区太小,则会引发异常。 对于流的连续解码,此方法通常是最佳选择。
另请参阅
适用于
GetCharCount(ReadOnlySpan<Byte>)
- Source:
- Encoding.cs
- Source:
- Encoding.cs
- Source:
- Encoding.cs
在派生类中重写时,计算对提供的只读字节范围进行解码所产生的字符数。
public:
virtual int GetCharCount(ReadOnlySpan<System::Byte> bytes);
public virtual int GetCharCount (ReadOnlySpan<byte> bytes);
abstract member GetCharCount : ReadOnlySpan<byte> -> int
override this.GetCharCount : ReadOnlySpan<byte> -> int
Public Overridable Function GetCharCount (bytes As ReadOnlySpan(Of Byte)) As Integer
参数
- bytes
- ReadOnlySpan<Byte>
要解码的只读字节范围。
返回
对字节范围进行解码所产生的字符数。
注解
若要计算 GetChars 存储所生成的字符所需的确切数组大小,应使用 GetCharCount 方法。 若要计算最大数组大小,请使用 GetMaxCharCount 方法。 GetCharCount方法通常允许分配较少的内存,而 GetMaxCharCount 方法的执行速度通常更快。
GetCharCount方法确定多少个字符会导致对一个字节序列进行解码,并且该 GetChars 方法执行实际解码。 GetChars方法需要分离转换,这与方法不同, Decoder.GetChars 后者处理单个输入流上的多个传递。
支持和的多个版本 GetCharCountGetChars 。 下面是有关使用这些方法的一些编程注意事项:
您的应用程序可能需要从代码页解码多个输入字节,并使用多个调用处理这些字节。 在这种情况下,可能需要在调用之间维护状态。
如果你的应用程序处理字符串输出,则建议使用 GetString 方法。 由于此方法必须检查字符串长度并分配一个缓冲区,因此它稍慢一些,但生成的 String 类型是首选的。
如果你的应用程序必须转换大量数据,则应重新使用输出缓冲区。 在这种情况下, GetChars(Byte[], Int32, Int32, Char[], Int32) 支持输出字符缓冲区的版本是最佳选择。
请考虑使用 Decoder.Convert 方法而不是 GetCharCount 。 转换方法尽可能多地转换数据,如果输出缓冲区太小,则会引发异常。 对于流的连续解码,此方法通常是最佳选择。
适用于
GetCharCount(Byte*, Int32)
- Source:
- Encoding.cs
- Source:
- Encoding.cs
- Source:
- Encoding.cs
重要
此 API 不符合 CLS。
在派生类中重写时,计算对字节序列(从指定的字节指针开始)进行解码所产生的字符数。
public:
virtual int GetCharCount(System::Byte* bytes, int count);
[System.CLSCompliant(false)]
[System.Security.SecurityCritical]
public virtual int GetCharCount (byte* bytes, int count);
[System.CLSCompliant(false)]
public virtual int GetCharCount (byte* bytes, int count);
[System.CLSCompliant(false)]
[System.Runtime.InteropServices.ComVisible(false)]
public virtual int GetCharCount (byte* bytes, int count);
[System.CLSCompliant(false)]
[System.Security.SecurityCritical]
[System.Runtime.InteropServices.ComVisible(false)]
public virtual int GetCharCount (byte* bytes, int count);
[<System.CLSCompliant(false)>]
[<System.Security.SecurityCritical>]
abstract member GetCharCount : nativeptr<byte> * int -> int
override this.GetCharCount : nativeptr<byte> * int -> int
[<System.CLSCompliant(false)>]
abstract member GetCharCount : nativeptr<byte> * int -> int
override this.GetCharCount : nativeptr<byte> * int -> int
[<System.CLSCompliant(false)>]
[<System.Runtime.InteropServices.ComVisible(false)>]
abstract member GetCharCount : nativeptr<byte> * int -> int
override this.GetCharCount : nativeptr<byte> * int -> int
[<System.CLSCompliant(false)>]
[<System.Security.SecurityCritical>]
[<System.Runtime.InteropServices.ComVisible(false)>]
abstract member GetCharCount : nativeptr<byte> * int -> int
override this.GetCharCount : nativeptr<byte> * int -> int
参数
- bytes
- Byte*
指向第一个要解码的字节的指针。
- count
- Int32
要解码的字节数。
返回
对指定字节序列进行解码所产生的字符数。
- 属性
例外
bytes
为 null
。
count
小于零。
发生回退(有关详细信息,请参阅采用 .NET 的字符编码)
-和-
注解
若要计算 GetChars 存储所生成的字符所需的确切数组大小,应使用 GetCharCount 方法。 若要计算最大数组大小,请使用 GetMaxCharCount 方法。 GetCharCount方法通常允许分配较少的内存,而 GetMaxCharCount 方法的执行速度通常更快。
GetCharCount方法确定多少个字符会导致对一个字节序列进行解码,并且该 GetChars 方法执行实际解码。 GetChars方法需要分离转换,这与方法不同, Decoder.GetChars 后者处理单个输入流上的多个传递。
支持和的多个版本 GetCharCountGetChars 。 下面是有关使用这些方法的一些编程注意事项:
您的应用程序可能需要从代码页解码多个输入字节,并使用多个调用处理这些字节。 在这种情况下,可能需要在调用之间维护状态。
如果你的应用程序处理字符串输出,则建议使用 GetString 方法。 由于此方法必须检查字符串长度并分配一个缓冲区,因此它稍慢一些,但生成的 String 类型是首选的。
的字节版本 GetChars(Byte*, Int32, Char*, Int32) 允许一些快速的方法,尤其是对大缓冲区的多个调用。 但请记住,此方法版本有时不安全,因为指针是必需的。
如果你的应用程序必须转换大量数据,则应重新使用输出缓冲区。 在这种情况下, GetChars(Byte[], Int32, Int32, Char[], Int32) 支持输出字符缓冲区的版本是最佳选择。
请考虑使用 Decoder.Convert 方法而不是 GetCharCount 。 转换方法尽可能多地转换数据,如果输出缓冲区太小,则会引发异常。 对于流的连续解码,此方法通常是最佳选择。
另请参阅
适用于
GetCharCount(Byte[], Int32, Int32)
- Source:
- Encoding.cs
- Source:
- Encoding.cs
- Source:
- Encoding.cs
在派生类中重写时,计算对字节序列(从指定字节数组开始)进行解码所产生的字符数。
public:
abstract int GetCharCount(cli::array <System::Byte> ^ bytes, int index, int count);
public abstract int GetCharCount (byte[] bytes, int index, int count);
abstract member GetCharCount : byte[] * int * int -> int
Public MustOverride Function GetCharCount (bytes As Byte(), index As Integer, count As Integer) As Integer
参数
- bytes
- Byte[]
包含要解码的字节序列的字节数组。
- index
- Int32
第一个要解码的字节的索引。
- count
- Int32
要解码的字节数。
返回
对指定字节序列进行解码所产生的字符数。
例外
bytes
为 null
。
发生回退(有关详细信息,请参阅采用 .NET 的字符编码)
-和-
示例
下面的示例将字符串从一种编码转换为另一种编码。
using namespace System;
using namespace System::Text;
int main()
{
String^ unicodeString = "This string contains the unicode character Pi (\u03a0)";
// Create two different encodings.
Encoding^ ascii = Encoding::ASCII;
Encoding^ unicode = Encoding::Unicode;
// Convert the string into a byte array.
array<Byte>^unicodeBytes = unicode->GetBytes( unicodeString );
// Perform the conversion from one encoding to the other.
array<Byte>^asciiBytes = Encoding::Convert( unicode, ascii, unicodeBytes );
// Convert the new Byte into[] a char and[] then into a string.
array<Char>^asciiChars = gcnew array<Char>(ascii->GetCharCount( asciiBytes, 0, asciiBytes->Length ));
ascii->GetChars( asciiBytes, 0, asciiBytes->Length, asciiChars, 0 );
String^ asciiString = gcnew String( asciiChars );
// Display the strings created before and after the conversion.
Console::WriteLine( "Original String*: {0}", unicodeString );
Console::WriteLine( "Ascii converted String*: {0}", asciiString );
}
// The example displays the following output:
// Original string: This string contains the unicode character Pi (Π)
// Ascii converted string: This string contains the unicode character Pi (?)
using System;
using System.Text;
class Example
{
static void Main()
{
string unicodeString = "This string contains the unicode character Pi (\u03a0)";
// Create two different encodings.
Encoding ascii = Encoding.ASCII;
Encoding unicode = Encoding.Unicode;
// Convert the string into a byte array.
byte[] unicodeBytes = unicode.GetBytes(unicodeString);
// Perform the conversion from one encoding to the other.
byte[] asciiBytes = Encoding.Convert(unicode, ascii, unicodeBytes);
// Convert the new byte[] into a char[] and then into a string.
char[] asciiChars = new char[ascii.GetCharCount(asciiBytes, 0, asciiBytes.Length)];
ascii.GetChars(asciiBytes, 0, asciiBytes.Length, asciiChars, 0);
string asciiString = new string(asciiChars);
// Display the strings created before and after the conversion.
Console.WriteLine("Original string: {0}", unicodeString);
Console.WriteLine("Ascii converted string: {0}", asciiString);
}
}
// The example displays the following output:
// Original string: This string contains the unicode character Pi (Π)
// Ascii converted string: This string contains the unicode character Pi (?)
Imports System.Text
Class Example
Shared Sub Main()
Dim unicodeString As String = "This string contains the unicode character Pi (" & ChrW(&H03A0) & ")"
' Create two different encodings.
Dim ascii As Encoding = Encoding.ASCII
Dim unicode As Encoding = Encoding.Unicode
' Convert the string into a byte array.
Dim unicodeBytes As Byte() = unicode.GetBytes(unicodeString)
' Perform the conversion from one encoding to the other.
Dim asciiBytes As Byte() = Encoding.Convert(unicode, ascii, unicodeBytes)
' Convert the new byte array into a char array and then into a string.
Dim asciiChars(ascii.GetCharCount(asciiBytes, 0, asciiBytes.Length)-1) As Char
ascii.GetChars(asciiBytes, 0, asciiBytes.Length, asciiChars, 0)
Dim asciiString As New String(asciiChars)
' Display the strings created before and after the conversion.
Console.WriteLine("Original string: {0}", unicodeString)
Console.WriteLine("Ascii converted string: {0}", asciiString)
End Sub
End Class
' The example displays the following output:
' Original string: This string contains the unicode character Pi (Π)
' Ascii converted string: This string contains the unicode character Pi (?)
下面的示例将字符串编码为一个字节数组,然后将一系列字节解码为字符数组。
using namespace System;
using namespace System::Text;
void PrintCountsAndChars( array<Byte>^bytes, int index, int count, Encoding^ enc );
int main()
{
// Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Encoding^ u32LE = Encoding::GetEncoding( "utf-32" );
Encoding^ u32BE = Encoding::GetEncoding( "utf-32BE" );
// Use a string containing the following characters:
// Latin Small Letter Z (U+007A)
// Latin Small Letter A (U+0061)
// Combining Breve (U+0306)
// Latin Small Letter AE With Acute (U+01FD)
// Greek Small Letter Beta (U+03B2)
String^ myStr = "za\u0306\u01FD\u03B2";
// Encode the string using the big-endian byte order.
array<Byte>^barrBE = gcnew array<Byte>(u32BE->GetByteCount( myStr ));
u32BE->GetBytes( myStr, 0, myStr->Length, barrBE, 0 );
// Encode the string using the little-endian byte order.
array<Byte>^barrLE = gcnew array<Byte>(u32LE->GetByteCount( myStr ));
u32LE->GetBytes( myStr, 0, myStr->Length, barrLE, 0 );
// Get the char counts, decode eight bytes starting at index 0,
// and print out the counts and the resulting bytes.
Console::Write( "BE array with BE encoding : " );
PrintCountsAndChars( barrBE, 0, 8, u32BE );
Console::Write( "LE array with LE encoding : " );
PrintCountsAndChars( barrLE, 0, 8, u32LE );
}
void PrintCountsAndChars( array<Byte>^bytes, int index, int count, Encoding^ enc )
{
// Display the name of the encoding used.
Console::Write( "{0,-25} :", enc );
// Display the exact character count.
int iCC = enc->GetCharCount( bytes, index, count );
Console::Write( " {0,-3}", iCC );
// Display the maximum character count.
int iMCC = enc->GetMaxCharCount( count );
Console::Write( " {0,-3} :", iMCC );
// Decode the bytes and display the characters.
array<Char>^chars = enc->GetChars( bytes, index, count );
// The following is an alternative way to decode the bytes:
// Char[] chars = new Char[iCC];
// enc->GetChars( bytes, index, count, chars, 0 );
Console::WriteLine( chars );
}
/*
This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
BE array with BE encoding : System.Text.UTF32Encoding : 2 6 :za
LE array with LE encoding : System.Text.UTF32Encoding : 2 6 :za
*/
using System;
using System.Text;
public class SamplesEncoding {
public static void Main() {
// Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Encoding u32LE = Encoding.GetEncoding( "utf-32" );
Encoding u32BE = Encoding.GetEncoding( "utf-32BE" );
// Use a string containing the following characters:
// Latin Small Letter Z (U+007A)
// Latin Small Letter A (U+0061)
// Combining Breve (U+0306)
// Latin Small Letter AE With Acute (U+01FD)
// Greek Small Letter Beta (U+03B2)
String myStr = "za\u0306\u01FD\u03B2";
// Encode the string using the big-endian byte order.
byte[] barrBE = new byte[u32BE.GetByteCount( myStr )];
u32BE.GetBytes( myStr, 0, myStr.Length, barrBE, 0 );
// Encode the string using the little-endian byte order.
byte[] barrLE = new byte[u32LE.GetByteCount( myStr )];
u32LE.GetBytes( myStr, 0, myStr.Length, barrLE, 0 );
// Get the char counts, decode eight bytes starting at index 0,
// and print out the counts and the resulting bytes.
Console.Write( "BE array with BE encoding : " );
PrintCountsAndChars( barrBE, 0, 8, u32BE );
Console.Write( "LE array with LE encoding : " );
PrintCountsAndChars( barrLE, 0, 8, u32LE );
}
public static void PrintCountsAndChars( byte[] bytes, int index, int count, Encoding enc ) {
// Display the name of the encoding used.
Console.Write( "{0,-25} :", enc.ToString() );
// Display the exact character count.
int iCC = enc.GetCharCount( bytes, index, count );
Console.Write( " {0,-3}", iCC );
// Display the maximum character count.
int iMCC = enc.GetMaxCharCount( count );
Console.Write( " {0,-3} :", iMCC );
// Decode the bytes and display the characters.
char[] chars = enc.GetChars( bytes, index, count );
// The following is an alternative way to decode the bytes:
// char[] chars = new char[iCC];
// enc.GetChars( bytes, index, count, chars, 0 );
Console.WriteLine( chars );
}
}
/*
This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
BE array with BE encoding : System.Text.UTF32Encoding : 2 6 :za
LE array with LE encoding : System.Text.UTF32Encoding : 2 6 :za
*/
Imports System.Text
Public Class SamplesEncoding
Public Shared Sub Main()
' Create two instances of UTF32Encoding: one with little-endian byte order and one with big-endian byte order.
Dim u32LE As Encoding = Encoding.GetEncoding("utf-32")
Dim u32BE As Encoding = Encoding.GetEncoding("utf-32BE")
' Use a string containing the following characters:
' Latin Small Letter Z (U+007A)
' Latin Small Letter A (U+0061)
' Combining Breve (U+0306)
' Latin Small Letter AE With Acute (U+01FD)
' Greek Small Letter Beta (U+03B2)
Dim myStr As String = "za" & ChrW(&H0306) & ChrW(&H01FD) & ChrW(&H03B2)
' Encode the string using the big-endian byte order.
' NOTE: In VB.NET, arrays contain one extra element by default.
' The following line creates barrBE with the exact number of elements required.
Dim barrBE(u32BE.GetByteCount(myStr) - 1) As Byte
u32BE.GetBytes(myStr, 0, myStr.Length, barrBE, 0)
' Encode the string using the little-endian byte order.
' NOTE: In VB.NET, arrays contain one extra element by default.
' The following line creates barrLE with the exact number of elements required.
Dim barrLE(u32LE.GetByteCount(myStr) - 1) As Byte
u32LE.GetBytes(myStr, 0, myStr.Length, barrLE, 0)
' Get the char counts, decode eight bytes starting at index 0,
' and print out the counts and the resulting bytes.
Console.Write("BE array with BE encoding : ")
PrintCountsAndChars(barrBE, 0, 8, u32BE)
Console.Write("LE array with LE encoding : ")
PrintCountsAndChars(barrLE, 0, 8, u32LE)
End Sub
Public Shared Sub PrintCountsAndChars(bytes() As Byte, index As Integer, count As Integer, enc As Encoding)
' Display the name of the encoding used.
Console.Write("{0,-25} :", enc.ToString())
' Display the exact character count.
Dim iCC As Integer = enc.GetCharCount(bytes, index, count)
Console.Write(" {0,-3}", iCC)
' Display the maximum character count.
Dim iMCC As Integer = enc.GetMaxCharCount(count)
Console.Write(" {0,-3} :", iMCC)
' Decode the bytes.
Dim chars As Char() = enc.GetChars(bytes, index, count)
' The following is an alternative way to decode the bytes:
' NOTE: In VB.NET, arrays contain one extra element by default.
' The following line creates the array with the exact number of elements required.
' Dim chars(iCC - 1) As Char
' enc.GetChars( bytes, index, count, chars, 0 )
' Display the characters.
Console.WriteLine(chars)
End Sub
End Class
'This code produces the following output. The question marks take the place of characters that cannot be displayed at the console.
'
'BE array with BE encoding : System.Text.UTF32Encoding : 2 6 :za
'LE array with LE encoding : System.Text.UTF32Encoding : 2 6 :za
注解
若要计算存储所生成的字符所需的确切数组大小 GetChars ,应使用 GetCharCount 方法。 若要计算最大数组大小,请使用 GetMaxCharCount 方法。 GetCharCount方法通常允许分配较少的内存,而 GetMaxCharCount 方法的执行速度通常更快。
GetCharCount方法确定多少个字符会导致对一个字节序列进行解码,并且该 GetChars 方法执行实际解码。 GetChars方法需要分离转换,这与方法不同, Decoder.GetChars 后者处理单个输入流上的多个传递。
支持和的多个版本 GetCharCountGetChars 。 下面是有关使用这些方法的一些编程注意事项:
您的应用程序可能需要从代码页解码多个输入字节,并使用多个调用处理这些字节。 在这种情况下,可能需要在调用之间维护状态。
如果你的应用程序处理字符串输出,则建议使用 GetString 方法。 由于此方法必须检查字符串长度并分配一个缓冲区,因此它稍慢一些,但生成的 String 类型是首选的。
的字节版本 GetChars(Byte*, Int32, Char*, Int32) 允许一些快速的方法,尤其是对大缓冲区的多个调用。 但请记住,此方法版本有时不安全,因为指针是必需的。
如果你的应用程序必须转换大量数据,则应重新使用输出缓冲区。 在这种情况下, GetChars(Byte[], Int32, Int32, Char[], Int32) 支持输出字符缓冲区的版本是最佳选择。
请考虑使用 Decoder.Convert 方法而不是 GetCharCount 。 转换方法尽可能多地转换数据,如果输出缓冲区太小,则会引发异常。 对于流的连续解码,此方法通常是最佳选择。