使用 Infer.NET 和概率性编程创建游戏匹配列表
此操作指南介绍了如何使用 Infer.NET 进行概率性编程。 概率性编程是一种将自定义模型表示为计算机程序的机器学习方法。 借助它可以在模型中包含专业知识,使机器学习系统更易理解。 它还支持在线推断,即在新数据到达时进行学习的过程。 Azure、Xbox 及必应中的多种 Microsoft 产品均使用了 Infer.NET。
什么是概率性编程?
借助概率性编程,可创建真实过程的统计模型。
先决条件
本地开发环境。
此操作指南要求有一台可用于进行开发的计算机。 .NET 教程 Hello World 10 分钟入门介绍了如何在 macOS、Windows 或 Linux 上设置本地开发环境。
创建应用
打开一个新的命令提示符,并运行下面的命令:
dotnet new console -o myApp
cd myApp
dotnet
命令将创建 console
类型的 new
应用程序。 -o
参数将创建名称为 myApp
的目录,会在其中存储应用并填充所需的文件。 cd myApp
命令会将你转到新创建的应用目录。
安装 Infer.NET 包
需安装 Microsoft.ML.Probabilistic.Compiler
包才能使用 Infer.NET。 在命令提示符中运行下面的命令:
dotnet add package Microsoft.ML.Probabilistic.Compiler
设计模型
示例使用在 Office 中进行的乒乓球或桌上足球比赛。 你具有参赛者的信息和每场比赛的结果。 你想要通过此数据推断玩家的实力。 假设每位玩家的潜在实力呈正态分布,且他们在给定比赛中的表现是此实力受干扰后的状态。 此数据会将胜者的表现约束在优于败者的表现。 这是常见 TrueSkill 模型的简化版,此模型也支持团队、平局及其他扩展项。 热销的 Halo 和 Gears of War 游戏中的比赛安排使用了此模型的高级版。
需要列出所推断玩家的实力及其方差(实力不确定性的度量值)。
游戏结果示例数据
游戏 | 胜者 | 败者 |
---|---|---|
1 | 玩家 0 | 玩家 1 |
2 | 玩家 0 | 玩家 3 |
3 | 玩家 0 | 玩家 4 |
4 | 玩家 1 | 玩家 2 |
5 | 玩家 3 | 玩家 1 |
6 | 玩家 4 | 玩家 2 |
仔细观察示例数据会发现玩家 3 和玩家 4 分别输赢过一次。 我们来看下使用概率性编程时的排名。 还会注意到有一位玩家 0,因为对于开发人员而言,甚至 Office 匹配列表都是从零开始的。
编写代码
设计模型后,就可以使用 Infer.NET 建模 API 将其表示为概率性程序。 在常用的文本编辑器中,打开 Program.cs
,并将其所有内容替换为以下代码:
namespace myApp
{
using System;
using System.Linq;
using Microsoft.ML.Probabilistic;
using Microsoft.ML.Probabilistic.Distributions;
using Microsoft.ML.Probabilistic.Models;
class Program
{
static void Main(string[] args)
{
// The winner and loser in each of 6 samples games
var winnerData = new[] { 0, 0, 0, 1, 3, 4 };
var loserData = new[] { 1, 3, 4, 2, 1, 2 };
// Define the statistical model as a probabilistic program
var game = new Range(winnerData.Length);
var player = new Range(winnerData.Concat(loserData).Max() + 1);
var playerSkills = Variable.Array<double>(player);
playerSkills[player] = Variable.GaussianFromMeanAndVariance(6, 9).ForEach(player);
var winners = Variable.Array<int>(game);
var losers = Variable.Array<int>(game);
using (Variable.ForEach(game))
{
// The player performance is a noisy version of their skill
var winnerPerformance = Variable.GaussianFromMeanAndVariance(playerSkills[winners[game]], 1.0);
var loserPerformance = Variable.GaussianFromMeanAndVariance(playerSkills[losers[game]], 1.0);
// The winner performed better in this game
Variable.ConstrainTrue(winnerPerformance > loserPerformance);
}
// Attach the data to the model
winners.ObservedValue = winnerData;
losers.ObservedValue = loserData;
// Run inference
var inferenceEngine = new InferenceEngine();
var inferredSkills = inferenceEngine.Infer<Gaussian[]>(playerSkills);
// The inferred skills are uncertain, which is captured in their variance
var orderedPlayerSkills = inferredSkills
.Select((s, i) => new { Player = i, Skill = s })
.OrderByDescending(ps => ps.Skill.GetMean());
foreach (var playerSkill in orderedPlayerSkills)
{
Console.WriteLine($"Player {playerSkill.Player} skill: {playerSkill.Skill}");
}
}
}
}
运行应用
在命令提示符中运行下面的命令:
dotnet run
结果
结果应如下所示:
Compiling model...done.
Iterating:
.........|.........|.........|.........|.........| 50
Player 0 skill: Gaussian(9.517, 3.926)
Player 3 skill: Gaussian(6.834, 3.892)
Player 4 skill: Gaussian(6.054, 4.731)
Player 1 skill: Gaussian(4.955, 3.503)
Player 2 skill: Gaussian(2.639, 4.288)
请注意,在结果中根据我们的模型玩家 3 排名略高于玩家 4。 因为玩家 3 战胜了玩家 1 的意义大于玩家 4 战胜玩家 2 的意义 – 请注意玩家 1 打败了玩家 2. 玩家 0 是总冠军!
继续学习
设计统计模型本身就是一种技能。 Microsoft Research Cambridge 团队曾编写过一本免费的在线书籍,其中简要介绍了此文。 此书的第 3 章详细介绍了 TrueSkill 模型。 只要脑海中已有模型,即可使用 Infer.NET 网站上的大量文档将其转换为代码。
后续步骤
查看 Infer.NET GitHub 存储库以继续学习,并找到更多示例。