演练:在启用 COM 的应用程序中使用并发运行时

本文档演示如何在使用组件对象模型 (COM) 的应用程序中使用并发运行时。

系统必备

在开始本演练之前,请阅读下列文档:

有关 COM 的更多信息,请参见组件对象模型 (COM)

管理 COM 库的生存期

尽管结合使用 COM 和并行运行时遵循与其他任何并发机制相同的准则,但以下准则可帮助您有效地一起使用这些库。

  • 线程必须先调用 CoInitializeEx 然后才能使用 COM 库。

  • 线程可以多次调用 CoInitializeEx,只要它每次调用都提供相同的参数。

  • 每当调用 CoInitializeEx 时,线程还必须调用 CoUninitialize。 也就是说,CoInitializeExCoUninitialize 的调用必须平衡。

  • 若要从一个线程单元切换到另一个线程单元,线程必须先完全释放 COM 库,然后再通过新的线程处理规范调用 CoInitializeEx

在将 COM 与并发运行时结合使用时,适用其他 COM 原则。 例如,在单线程单元 (STA) 中创建对象并将此对象封送到另一个单元的应用程序还必须提供用于处理传入消息的消息循环。 还请记住,在单元之间封送对象会降低性能。

结合使用 COM 和并行模式库

将 COM 与并行模式库 (PPL) 中的某个组件(如任务组或并行算法)一起使用时,请先调用 CoInitializeEx,再在每个任务或迭代的执行期间使用 COM 库,接着调用 CoUninitialize,然后完成每个任务或迭代。 以下示例演示如何使用 Concurrency::structured_task_group 对象管理 COM 库的生存期。

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   // Initialize the COM library on the current thread.
   CoInitializeEx(NULL, COINIT_MULTITHREADED);

   // TODO: Perform task here.

   // Free the COM library.
   CoUninitialize();
});   
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

必须确保在取消任务或并行算法时或任务正文引发异常时正确释放 COM 库。 为了保证任务在退出之前调用 CoUninitialize,请使用 try-finally 块或“获取资源即初始化”(RAII) 模式。 以下示例使用 try-finally 块在任务完成或取消时或引发异常时释放 COM 库。

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   bool coinit = false;            
   __try {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);
      coinit = true;

      // TODO: Perform task here.
   }
   __finally {
      // Free the COM library.
      if (coinit)
         CoUninitialize();
   }      
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

以下示例使用 RAII 模式定义 CCoInitializer 类,该类管理 COM 库在给定范围内的生存期。

// An exception-safe wrapper class that manages the lifetime 
// of the COM library in a given scope.
class CCoInitializer
{
public:
   explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
      : _coinitialized(false)
   {
      // Initialize the COM library on the current thread.
      HRESULT hr = CoInitializeEx(NULL, dwCoInit);
      if (FAILED(hr))
         throw hr;
      _coinitialized = true;
   }
   ~CCoInitializer()
   {
      // Free the COM library.
      if (_coinitialized)
         CoUninitialize();
   }
private:
   // Flags whether COM was properly initialized.
   bool _coinitialized;

   // Hide copy constructor and assignment operator.
   CCoInitializer(const CCoInitializer&);
   CCoInitializer& operator=(const CCoInitializer&);
};

使用 CCoInitializer 类可在任务退出时自动释放 COM 库,如下所示。

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   // Enable COM for the lifetime of the task.
   CCoInitializer coinit(COINIT_MULTITHREADED);

   // TODO: Perform task here.

   // The CCoInitializer object frees the COM library
   // when the task exits.
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

有关并发运行时中的取消操作的更多信息,请参见 PPL 中的取消操作

结合使用 COM 和异步代理

将 COM 与异步代理结合使用时,请先调用 CoInitializeEx,然后在代理的 Concurrency::agent::run 方法中使用 COM 库。 然后,在 run 方法返回之前调用 CoUninitialize。 不要在代理的构造函数或析构函数中使用 COM 管理例程,也不要重写 Concurrency::agent::startConcurrency::agent::done 方法,因为这些方法是从与 run 方法不同的线程调用的。

以下示例演示了一个名为 CCoAgent 的基本代理类,该类使用 run 方法管理 COM 库。

class CCoAgent : public agent
{
protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // TODO: Perform work here.

      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }
};

本演练稍后将提供一个完整示例。

结合使用 COM 和轻量级任务

任务计划程序(并发运行时)文档介绍并发运行时中的轻量级任务的角色。 就像对传递到 Windows API 中的 CreateThread 函数的线程例程所做的那样,可以将 COM 与轻量级任务一起使用。 以下示例对此进行了演示。

// A basic lightweight task that you schedule directly from a 
// Scheduler or ScheduleGroup object.
void ThreadProc(void* data)
{
   // Initialize the COM library on the current thread.
   CoInitializeEx(NULL, COINIT_MULTITHREADED);

   // TODO: Perform work here.

   // Free the COM library.
   CoUninitialize();
}

启用 COM 的应用程序的示例

本节将演示一个完整的启用 COM 的应用程序,该应用程序使用 IScriptControl 接口执行计算第 N 个斐波纳契数的脚本。 此示例首先从主线程调用此脚本,再使用 PPL 和代理同时调用此脚本。

请考虑 helper 函数 RunScriptProcedure,该函数可调用 IScriptControl 对象中的过程。

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl, 
   _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
   // Create a 1-dimensional, 0-based safe array.
   SAFEARRAYBOUND rgsabound[]  = { ArgCount, 0 };
   CComSafeArray<VARIANT> sa(rgsabound, 1U);

   // Copy the arguments to the safe array.
   LONG lIndex = 0;
   for_each(arguments.begin(), arguments.end(), [&](_variant_t& arg) {
      HRESULT hr = sa.SetAt(lIndex, arg);
      if (FAILED(hr))
         throw hr;
      ++lIndex;
   });

   //  Call the procedure in the script.
   return pScriptControl->Run(procedureName, &sa.m_psa);
}

wmain 函数将创建一个 IScriptControl 对象,再向该对象添加计算第 N 个斐波纳契数的脚本代码,然后调用 RunScriptProcedure 函数来运行此脚本。

int wmain()
{
   HRESULT hr;

   // Enable COM on this thread for the lifetime of the program.   
   CCoInitializer coinit(COINIT_MULTITHREADED);

   // Create the script control.
   IScriptControlPtr pScriptControl(__uuidof(ScriptControl));

   // Set script control properties.
   pScriptControl->Language = "JScript";
   pScriptControl->AllowUI = TRUE;

   // Add script code that computes the nth Fibonacci number.
   hr = pScriptControl->AddCode(
      "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
   if (FAILED(hr))
      return hr;

   // Test the script control by computing the 15th Fibonacci number.
   wcout << endl << L"Main Thread:" << endl;
   LONG lValue = 15;
   array<_variant_t, 1> args = { _variant_t(lValue) };
   _variant_t result = RunScriptProcedure(
      pScriptControl, 
      _bstr_t("fib"), 
      args);
   // Print the result.
   wcout << L"fib(" << lValue << L") = " << result.lVal << endl;

   return S_OK;
}

从 PPL 中调用脚本

ParallelFibonacci 函数使用 Concurrency::parallel_for 算法以并行方式调用此脚本。 在任务的每次迭代期间,此函数使用 CCoInitializer 类来管理 COM 库的生存期。

// Computes multiple Fibonacci numbers in parallel by using 
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
   try {
      parallel_for(10L, 20L, [&pScriptControl](LONG lIndex) 
      {
         // Enable COM for the lifetime of the task.
         CCoInitializer coinit(COINIT_MULTITHREADED);

         // Call the helper function to run the script procedure.
         array<_variant_t, 1> args = { _variant_t(lIndex) };
         _variant_t result = RunScriptProcedure(
            pScriptControl, 
            _bstr_t("fib"), 
            args);

         // Print the result.
         wstringstream ss;         
         ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
         wcout << ss.str();
      });
   }
   catch (HRESULT hr) {
      return hr;
   }
   return S_OK;
}

若要在此示例中使用 ParallelFibonacci 函数,请在 wmain 函数返回之前添加以下代码。

// Use the parallel_for algorithm to compute multiple 
// Fibonacci numbers in parallel.
wcout << endl << L"Parallel Fibonacci:" << endl;
if (FAILED(hr = ParallelFibonacci(pScriptControl)))
   return hr;

从代理调用脚本

以下示例演示调用脚本过程来计算第 N 个斐波纳契数的 FibonacciScriptAgent 类。 FibonacciScriptAgent 类使用消息传递功能,从主程序接收此脚本函数的输入值。 run 方法管理 COM 库在整个任务中的生存期。

// A basic agent that calls a script procedure to compute the 
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
   FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
      : _pScriptControl(pScriptControl)
      , _source(source) { }

public:
   // Retrieves the result code.
   HRESULT GetHRESULT() 
   {
      return receive(_result);
   }

protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // Read values from the message buffer until 
      // we receive the sentinel value.      
      LONG lValue;
      while ((lValue = receive(_source)) != Sentinel)
      {
         try {
            // Call the helper function to run the script procedure.
            array<_variant_t, 1> args = { _variant_t(lValue) };
            _variant_t result = RunScriptProcedure(
               _pScriptControl, 
               _bstr_t("fib"), 
               args);

            // Print the result.
            wstringstream ss;         
            ss << L"fib(" << lValue << L") = " << result.lVal << endl;
            wcout << ss.str();
         }
         catch (HRESULT hr) {
            send(_result, hr);
            break;    
         }
      }

      // Set the result code (does nothing if a value is already set).
      send(_result, S_OK);

      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }

public:
   // Signals the agent to terminate.
   static const LONG Sentinel = 0L;

private:
   // The IScriptControl object that contains the script procedure.
   IScriptControlPtr _pScriptControl;
   // Message buffer from which to read arguments to the 
   // script procedure.
   ISource<LONG>& _source;
   // The result code for the overall operation.
   single_assignment<HRESULT> _result;
};

函数 AgentFibonacci 创建若干个 FibonacciScriptAgent 对象,并使用消息传递功能向这些对象发送若干个输入值。

// Computes multiple Fibonacci numbers in parallel by using 
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
   // Message buffer to hold arguments to the script procedure.
   unbounded_buffer<LONG> values;

   // Create several agents.
   array<agent*, 3> agents = 
   {
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
   };

   // Start each agent.
   for_each(agents.begin(), agents.end(), [](agent* a) {
      a->start();
   });

   // Send a few values to the agents.
   send(values, 30L);
   send(values, 22L);
   send(values, 10L);
   send(values, 12L);
   // Send a sentinel value to each agent.
   for_each(agents.begin(), agents.end(), [&values](agent* _) {
      send(values, FibonacciScriptAgent::Sentinel);
   });

   // Wait for all agents to finish.
   agent::wait_for_all(3, &agents[0]);

   // Determine the result code.
   HRESULT hr = S_OK;
   for_each(agents.begin(), agents.end(), [&hr](agent* a) {
      HRESULT hrTemp;
      if (FAILED(hrTemp = 
         reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
      {
         hr = hrTemp;
      }
   });

   // Clean up.
   for_each(agents.begin(), agents.end(), [](agent* a) {
      delete a;
   });

   return hr;
}

若要在此示例中使用 AgentFibonacci 函数,请在 wmain 函数返回之前添加以下代码。

// Use asynchronous agents to compute multiple 
// Fibonacci numbers in parallel.
wcout << endl << L"Agent Fibonacci:" << endl;
if (FAILED(hr = AgentFibonacci(pScriptControl)))
   return hr;

完整示例

下面的代码演示完整示例,该示例使用并行算法和异步代理调用计算斐波那契数列的脚本过程。

// parallel-scripts.cpp
// compile with: /EHsc 

#include <agents.h>
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>
#include <atlsafe.h>

// TODO: Change this path if necessary.
#import "C:\windows\system32\msscript.ocx"

using namespace Concurrency;
using namespace MSScriptControl;
using namespace std;

// An exception-safe wrapper class that manages the lifetime 
// of the COM library in a given scope.
class CCoInitializer
{
public:
   explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
      : _coinitialized(false)
   {
      // Initialize the COM library on the current thread.
      HRESULT hr = CoInitializeEx(NULL, dwCoInit);
      if (FAILED(hr))
         throw hr;
      _coinitialized = true;
   }
   ~CCoInitializer()
   {
      // Free the COM library.
      if (_coinitialized)
         CoUninitialize();
   }
private:
   // Flags whether COM was properly initialized.
   bool _coinitialized;

   // Hide copy constructor and assignment operator.
   CCoInitializer(const CCoInitializer&);
   CCoInitializer& operator=(const CCoInitializer&);
};

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl, 
   _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
   // Create a 1-dimensional, 0-based safe array.
   SAFEARRAYBOUND rgsabound[]  = { ArgCount, 0 };
   CComSafeArray<VARIANT> sa(rgsabound, 1U);

   // Copy the arguments to the safe array.
   LONG lIndex = 0;
   for_each(arguments.begin(), arguments.end(), [&](_variant_t& arg) {
      HRESULT hr = sa.SetAt(lIndex, arg);
      if (FAILED(hr))
         throw hr;
      ++lIndex;
   });

   //  Call the procedure in the script.
   return pScriptControl->Run(procedureName, &sa.m_psa);
}

// Computes multiple Fibonacci numbers in parallel by using 
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
   try {
      parallel_for(10L, 20L, [&pScriptControl](LONG lIndex) 
      {
         // Enable COM for the lifetime of the task.
         CCoInitializer coinit(COINIT_MULTITHREADED);

         // Call the helper function to run the script procedure.
         array<_variant_t, 1> args = { _variant_t(lIndex) };
         _variant_t result = RunScriptProcedure(
            pScriptControl, 
            _bstr_t("fib"), 
            args);

         // Print the result.
         wstringstream ss;         
         ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
         wcout << ss.str();
      });
   }
   catch (HRESULT hr) {
      return hr;
   }
   return S_OK;
}

// A basic agent that calls a script procedure to compute the 
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
   FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
      : _pScriptControl(pScriptControl)
      , _source(source) { }

public:
   // Retrieves the result code.
   HRESULT GetHRESULT() 
   {
      return receive(_result);
   }

protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // Read values from the message buffer until 
      // we receive the sentinel value.      
      LONG lValue;
      while ((lValue = receive(_source)) != Sentinel)
      {
         try {
            // Call the helper function to run the script procedure.
            array<_variant_t, 1> args = { _variant_t(lValue) };
            _variant_t result = RunScriptProcedure(
               _pScriptControl, 
               _bstr_t("fib"), 
               args);

            // Print the result.
            wstringstream ss;         
            ss << L"fib(" << lValue << L") = " << result.lVal << endl;
            wcout << ss.str();
         }
         catch (HRESULT hr) {
            send(_result, hr);
            break;    
         }
      }

      // Set the result code (does nothing if a value is already set).
      send(_result, S_OK);

      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }

public:
   // Signals the agent to terminate.
   static const LONG Sentinel = 0L;

private:
   // The IScriptControl object that contains the script procedure.
   IScriptControlPtr _pScriptControl;
   // Message buffer from which to read arguments to the 
   // script procedure.
   ISource<LONG>& _source;
   // The result code for the overall operation.
   single_assignment<HRESULT> _result;
};

// Computes multiple Fibonacci numbers in parallel by using 
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
   // Message buffer to hold arguments to the script procedure.
   unbounded_buffer<LONG> values;

   // Create several agents.
   array<agent*, 3> agents = 
   {
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
   };

   // Start each agent.
   for_each(agents.begin(), agents.end(), [](agent* a) {
      a->start();
   });

   // Send a few values to the agents.
   send(values, 30L);
   send(values, 22L);
   send(values, 10L);
   send(values, 12L);
   // Send a sentinel value to each agent.
   for_each(agents.begin(), agents.end(), [&values](agent* _) {
      send(values, FibonacciScriptAgent::Sentinel);
   });

   // Wait for all agents to finish.
   agent::wait_for_all(3, &agents[0]);

   // Determine the result code.
   HRESULT hr = S_OK;
   for_each(agents.begin(), agents.end(), [&hr](agent* a) {
      HRESULT hrTemp;
      if (FAILED(hrTemp = 
         reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
      {
         hr = hrTemp;
      }
   });

   // Clean up.
   for_each(agents.begin(), agents.end(), [](agent* a) {
      delete a;
   });

   return hr;
}

int wmain()
{
   HRESULT hr;

   // Enable COM on this thread for the lifetime of the program.   
   CCoInitializer coinit(COINIT_MULTITHREADED);

   // Create the script control.
   IScriptControlPtr pScriptControl(__uuidof(ScriptControl));

   // Set script control properties.
   pScriptControl->Language = "JScript";
   pScriptControl->AllowUI = TRUE;

   // Add script code that computes the nth Fibonacci number.
   hr = pScriptControl->AddCode(
      "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
   if (FAILED(hr))
      return hr;

   // Test the script control by computing the 15th Fibonacci number.
   wcout << L"Main Thread:" << endl;
   long n = 15;
   array<_variant_t, 1> args = { _variant_t(n) };
   _variant_t result = RunScriptProcedure(
      pScriptControl, 
      _bstr_t("fib"), 
      args);
   // Print the result.
   wcout << L"fib(" << n << L") = " << result.lVal << endl;

   // Use the parallel_for algorithm to compute multiple 
   // Fibonacci numbers in parallel.
   wcout << endl << L"Parallel Fibonacci:" << endl;
   if (FAILED(hr = ParallelFibonacci(pScriptControl)))
      return hr;

   // Use asynchronous agents to compute multiple 
   // Fibonacci numbers in parallel.
   wcout << endl << L"Agent Fibonacci:" << endl;
   if (FAILED(hr = AgentFibonacci(pScriptControl)))
      return hr;

   return S_OK;
}

此示例产生下面的示例输出。

Main Thread:
fib(15) = 610

Parallel Fibonacci:
fib(15) = 610
fib(10) = 55
fib(16) = 987
fib(18) = 2584
fib(11) = 89
fib(17) = 1597
fib(19) = 4181
fib(12) = 144
fib(13) = 233
fib(14) = 377

Agent Fibonacci:
fib(30) = 832040
fib(22) = 17711
fib(10) = 55
fib(12) = 144

编译代码

复制代码示例,将其粘贴到 Visual Studio 项目中或名为 parallel-scripts.cpp 的文件中,然后在 Visual Studio 2010 命令提示符窗口中运行以下命令。

cl.exe /EHsc parallel-scripts.cpp /link ole32.lib

请参见

概念

并发运行时演练

任务并行(并发运行时)

并行算法

异步代理

并发运行时中的异常处理

PPL 中的取消操作

任务计划程序(并发运行时)