結構化輸出會讓模型遵循您作為推斷 API 呼叫一部分所提供的 JSON 架構 定義。 這與較舊的 JSON 模式 功能相反,此功能保證會產生有效的 JSON,但無法確保嚴格遵循提供的架構。 建議使用結構化輸出來呼叫函式、擷取結構化數據,以及建置複雜的多步驟工作流程。
附註
目前結構化輸出不支援使用:
- 攜帶您自己的資料案例。
- 助理 或 Azure AI 代理程式服務。
gpt-4o-audio-preview
和gpt-4o-mini-audio-preview
版本:2024-12-17
。
支援的模型
codex-mini
版本2025-05-16
o3-pro
版本2025-06-10
gpt-4.5-preview
版本2025-02-27
o3-mini
版本2025-01-31
o1
版本:2024-12-17
gpt-4o-mini
版本:2024-07-18
gpt-4o
版本:2024-08-06
gpt-4o
版本:2024-11-20
gpt-4.1
版本2025-04-14
gpt-4.1-nano
版本2025-04-14
gpt-4.1-mini
版本:2025-04-14
o4-mini
版本:2025-04-16
o3
版本:2025-04-16
API 支援
API 版本 2024-08-01-preview
首次新增對結構化輸出的支援。 其可在最新的預覽 API 以及最新的 GA API 中使用: 2024-10-21
。
開始使用
您可以使用 Pydantic
以 Python 定義物件結構描述。 根據您執行的 OpenAI 版本和 Pydantic
連結庫 ,您可能需要升級至較新版本。 這些範例是針對 openai 1.42.0
和 pydantic 2.8.2
進行測試。
pip install openai pydantic --upgrade
如果您不熟悉使用 Microsoft Entra ID 進行驗證,請參閱 如何使用 Microsoft Entra ID 驗證在 Azure AI Foundry 模型中設定 Azure OpenAI。
import os
from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_ad_token_provider=token_provider,
api_version="2024-10-21"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
event = completion.choices[0].message.parsed
print(event)
print(completion.model_dump_json(indent=2))
輸出
name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
"id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
"refusal": null,
"role": "assistant",
"function_call": null,
"tool_calls": [],
"parsed": {
"name": "Science Fair",
"date": "Friday",
"participants": [
"Alice",
"Bob"
]
}
}
}
],
"created": 1724857389,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": "fp_1c2eaec9fe",
"usage": {
"completion_tokens": 27,
"prompt_tokens": 32,
"total_tokens": 59
}
}
具有結構化輸出的函式呼叫
可以透過提供 strict: true
,使用單一參數來允許結構化輸出用於函式呼叫。
附註
平行函數調用不支援結構化輸出。 當使用結構化輸出時,將 parallel_tool_calls
設定為 false
。
from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-10-21"
)
class GetDeliveryDate(BaseModel):
order_id: str
tools = [openai.pydantic_function_tool(GetDeliveryDate)]
messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
response = client.chat.completions.create(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=messages,
tools=tools
)
print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))
開始使用
將下列套件新增至您的專案以使用 Azure OpenAI:
- Azure.AI.OpenAI:提供 Azure OpenAI 用戶端,其中包含以標準 OpenAI 連結庫相依性為基礎的 Azure 特定功能。
- Azure.Identity:在 Azure SDK 連結庫中提供Microsoft Entra ID 令牌驗證支援。
- Newtonsoft.Json.Schema:提供實用的公用程式來使用 JSON 架構。
dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Newtonsoft.Json.Schema
如果您不熟悉使用 Microsoft Entra ID 進行驗證,請參閱 如何使用 Microsoft Entra ID 驗證在 Azure AI Foundry 模型中設定 Azure OpenAI。
using Azure.AI.OpenAI;
using Azure.Identity;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var client = openAIClient.GetChatClient("gpt-4o");
// Create a chat with initial prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Get the schema of the class for the structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a completion with structured output
var chatUpdates = client.CompleteChatStreamingAsync(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema))
});
// Write the structured response
await foreach (var chatUpdate in chatUpdates)
{
foreach (var contentPart in chatUpdate.ContentUpdate)
{
Console.Write(contentPart.Text);
}
}
// The class for the structured response
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public List<string> Participants { get; set; }
}
具有結構化輸出的函式呼叫
可以透過提供 strict: true
,使用單一參數來允許結構化輸出用於函式呼叫。
using Azure.AI.OpenAI;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var chatClient = openAIClient.GetChatClient("gpt-4o");
// Local function to be used by the assistant tooling
string GetTemperature(string location, string date)
{
// Placeholder for Weather API
if(location == "Seattle" && date == "2025-06-01")
{
return "75";
}
return "50";
}
// Create a tool to get the temperature
ChatTool GetTemperatureTool = ChatTool.CreateFunctionTool(
functionName: nameof(GetTemperature),
functionSchemaIsStrict: true,
functionDescription: "Get the projected temperature by date and location.",
functionParameters: BinaryData.FromBytes("""
{
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location of the weather."
},
"date": {
"type": "string",
"description": "The date of the projected weather."
}
},
"required": ["location", "date"],
"additionalProperties": false
}
"""u8.ToArray())
);
// Create a chat with prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Create a JSON schema for the CalendarEvent structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a chat completion from the AI model
var completion = chatClient.CompleteChat(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema)),
Tools = { GetTemperatureTool }
});
Console.WriteLine(completion.Value.ToolCalls[0].FunctionName);
// Structured response class
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public string Temperature { get; set; }
public List<string> Participants { get; set; }
}
開始使用
response_format
已設為 json_schema
,並設定了 strict: true
。
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "CalendarEventResponse",
"strict": true,
"schema": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"date": {
"type": "string"
},
"participants": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": [
"name",
"date",
"participants"
],
"additionalProperties": false
}
}
}
}'
輸出:
{
"id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
"object": "chat.completion",
"created": 1724868330,
"model": "gpt-4o-2024-08-06",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 33,
"completion_tokens": 27,
"total_tokens": 60
},
"system_fingerprint": "fp_1c2eaec9fe"
}
具有結構化輸出的函式呼叫
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
},
{
"role": "user",
"content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "query",
"description": "Execute a query.",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"table_name": {
"type": "string",
"enum": ["orders"]
},
"columns": {
"type": "array",
"items": {
"type": "string",
"enum": [
"id",
"status",
"expected_delivery_date",
"delivered_at",
"shipped_at",
"ordered_at",
"canceled_at"
]
}
},
"conditions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"column": {
"type": "string"
},
"operator": {
"type": "string",
"enum": ["=", ">", "<", ">=", "<=", "!="]
},
"value": {
"anyOf": [
{
"type": "string"
},
{
"type": "number"
},
{
"type": "object",
"properties": {
"column_name": {
"type": "string"
}
},
"required": ["column_name"],
"additionalProperties": false
}
]
}
},
"required": ["column", "operator", "value"],
"additionalProperties": false
}
},
"order_by": {
"type": "string",
"enum": ["asc", "desc"]
}
},
"required": ["table_name", "columns", "conditions", "order_by"],
"additionalProperties": false
}
}
}
]
}'
支援的結構描述與限制
Azure OpenAI 結構化輸出支援與 OpenAI 相同的 JSON 架構 子集。
支援的類型
- 繩子
- Number
- 布爾邏輯
- 整數
- 物體
- Array
- Enum
- anyOf
附註
根物件不能是 anyOf
類型。
所有欄位都必須是必要項目
所有欄位或函式參數都必須按要求包含。 在下列範例中,location
和 unit
都是在 "required": ["location", "unit"]
下指定的。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": "string",
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": ["location", "unit"]
}
如有需要,可以使用具有 null
的聯合類型來模擬選擇性參數。 在此範例中,使用了下列程式行來達成:"type": ["string", "null"],
。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": ["string", "null"],
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": [
"location", "unit"
]
}
}
巢狀項目深度
結構描述最多可以有總計 100 個物件屬性,最多五個巢狀項目層級
additionalProperties: false 一律必須在物件中設定
此屬性控制物件是否可以擁有在 JSON 結構描述中未定義的額外索引鍵/值組。 若要使用結構化輸出,您必須將此值設定為 false。
索引鍵排序
結構化輸出的排序方式與提供的結構描述相同。 若要變更輸出順序,請修改您在推斷要求中傳送的結構描述順序。
不支援的類型特定關鍵字
類型 | 不支援的關鍵字 |
---|---|
繩子 | minlength maxLength pattern 格式 |
Number | 最小值 最大值 multipleOf |
物件 | patternProperties unevaluatedProperties propertyNames minProperties maxProperties |
Arrays | 未評估項目 contains minContains maxContains minItems (最少項目數) maxItems 獨特項目 |
使用 anyOf 的巢狀結構描述必須遵守整體 JSON 結構描述子集
支援的 anyOf
結構描述範例:
{
"type": "object",
"properties": {
"item": {
"anyOf": [
{
"type": "object",
"description": "The user object to insert into the database",
"properties": {
"name": {
"type": "string",
"description": "The name of the user"
},
"age": {
"type": "number",
"description": "The age of the user"
}
},
"additionalProperties": false,
"required": [
"name",
"age"
]
},
{
"type": "object",
"description": "The address object to insert into the database",
"properties": {
"number": {
"type": "string",
"description": "The number of the address. Eg. for 123 main st, this would be 123"
},
"street": {
"type": "string",
"description": "The street name. Eg. for 123 main st, this would be main st"
},
"city": {
"type": "string",
"description": "The city of the address"
}
},
"additionalProperties": false,
"required": [
"number",
"street",
"city"
]
}
]
}
},
"additionalProperties": false,
"required": [
"item"
]
}
定義已被支持
支援的範例:
{
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"$ref": "#/$defs/step"
}
},
"final_answer": {
"type": "string"
}
},
"$defs": {
"step": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": [
"explanation",
"output"
],
"additionalProperties": false
}
},
"required": [
"steps",
"final_answer"
],
"additionalProperties": false
}
支援遞迴結構模式
使用 # 進行根遞迴的範例:
{
"name": "ui",
"description": "Dynamically generated UI",
"strict": true,
"schema": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "The type of the UI component",
"enum": ["div", "button", "header", "section", "field", "form"]
},
"label": {
"type": "string",
"description": "The label of the UI component, used for buttons or form fields"
},
"children": {
"type": "array",
"description": "Nested UI components",
"items": {
"$ref": "#"
}
},
"attributes": {
"type": "array",
"description": "Arbitrary attributes for the UI component, suitable for any element",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the attribute, for example onClick or className"
},
"value": {
"type": "string",
"description": "The value of the attribute"
}
},
"additionalProperties": false,
"required": ["name", "value"]
}
}
},
"required": ["type", "label", "children", "attributes"],
"additionalProperties": false
}
}
明確遞迴的範例:
{
"type": "object",
"properties": {
"linked_list": {
"$ref": "#/$defs/linked_list_node"
}
},
"$defs": {
"linked_list_node": {
"type": "object",
"properties": {
"value": {
"type": "number"
},
"next": {
"anyOf": [
{
"$ref": "#/$defs/linked_list_node"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"required": [
"next",
"value"
]
}
},
"additionalProperties": false,
"required": [
"linked_list"
]
}