由於升級至新版本,您可能會收到不同的結果。
Spark >= 3.0:
無法辨識 <pattern>
DateTimeFormatter 中的模式。
You can set
<config>
to "LEGACY
" to restore the behavior before Spark 3.0.You can form a valid datetime pattern with the guide from '
<docroot>
/sql-ref-datetime-pattern.html'.
Spark >= 3.0:
由於Spark 3.0偵測到以周為基礎的字元,因此不支援所有以周為基礎的模式: <c>
。
請改用 SQL 函式 EXTRACT
。
Spark >= 3.0:
無法在新的解析器中剖析 <datetime>
。
You can set <config>
to "LEGACY
" to restore the behavior before Spark 3.0, or set to "CORRECTED
" and treat it as an invalid datetime string.
Spark >= 3.0:
reading dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z
from <format>
files can be ambiguous, as the files may be written by
Spark 2.x 或舊版 Hive,其使用舊版混合式行事曆
that is different from Spark 3.0+'s Proleptic Gregorian calendar.
如需詳細資訊,請參閱 SPARK
-31404。 You can set the SQL config <config>
or
the datasource option <option>
to "LEGACY
" to rebase the datetime values
w.r.t. the calendar difference during reading. To read the datetime values
as it is, set the SQL config <config>
or the datasource option <option>
to "CORRECTED
".
Spark >= <sparkVersion>
: <details>
Spark >= 3.0:
writing dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z into <format>
files can be dangerous, as the files may be read by Spark 2.x or legacy versions of Hive later, which uses a legacy hybrid calendar that is different from Spark 3.0+'s Proleptic Gregorian calendar.
如需詳細資訊,請參閱 SPARK
-31404。
You can set <config>
to "LEGACY
" to rebase the datetime values w.r.t. the calendar difference during writing, to get maximum interoperability.
Or set the config to "CORRECTED
" to write the datetime values as it is, if you are sure that the written files will only be read by Spark 3.0+ or other systems that use Proleptic Gregorian calendar.