瞭解如何建立可搜尋的追蹤、有效地查詢追蹤,以及分析結果,以深入瞭解 GenAI 應用程式的行為。
快速參考
基本搜尋語法
# Search by status
mlflow.search_traces("attributes.status = 'OK'")
mlflow.search_traces("attributes.status = 'ERROR'")
# Search by time (milliseconds since epoch)
mlflow.search_traces("attributes.timestamp_ms > 1749006880539")
mlflow.search_traces("attributes.execution_time_ms > 5000")
# Search by tags
mlflow.search_traces("tags.environment = 'production'")
mlflow.search_traces("tags.`mlflow.traceName` = 'my_function'")
# Search by metadata
mlflow.search_traces("metadata.`mlflow.user` = 'alice@company.com'")
# Combined filters (AND only)
mlflow.search_traces(
"attributes.status = 'OK' AND tags.environment = 'production'"
)
金鑰規則
-
一律使用前置詞:
attributes.
、tags.
、 或metadata.
- 如果標籤或屬性名稱中有句點,請使用反引號:
-
僅限單引號:
'value'
不是"value"
-
時間的毫秒:
1749006880539
不是日期 - 僅限 AND:不支援 OR
可搜尋的欄位
領域 | 路徑 | 運營商 |
---|---|---|
地位 | attributes.status |
= 、!= |
時間戳 | attributes.timestamp_ms |
= 、< 、<= 、> 、>= |
持續時間 | attributes.execution_time_ms |
= 、< 、<= 、> 、>= |
標籤 | tags.* |
= 、!= |
後設資料 | metadata.* |
= 、!= |
端對端範例
備註:先決條件
安裝 MLflow 和必要套件
pip install --upgrade "mlflow[databricks]>=3.1.0" openai "databricks-connect>=16.1"
按照 設定環境的快速入門指南,來建立 MLflow 實驗。 :::
建立範例追蹤以示範搜尋功能:
import time
import mlflow
# Define methods to be traced
@mlflow.trace()
def morning_greeting(name: str):
time.sleep(1)
# Add tag and metadata for better categorization
mlflow.update_current_trace(
tags={"person": name},
)
return f"Good morning {name}."
@mlflow.trace()
def evening_greeting(name: str):
time.sleep(1)
# Add tag with different values for comparison
mlflow.update_current_trace(
tags={"person": name},
)
return f"Good evening {name}."
@mlflow.trace()
def goodbye():
# Add tag even for functions that might fail
mlflow.update_current_trace(
tags={"greeting_type": "goodbye"},
)
raise Exception("Cannot say goodbye")
# Execute the methods
morning_greeting("Tom")
# Get the timestamp in milliseconds
morning_time = int(time.time() * 1000)
evening_greeting("Mary")
# Execute goodbye, catching the exception
try:
goodbye()
except Exception as e:
print(f"Caught expected exception: {e}")
pass
上述程式代碼會建立下列追蹤:
使用正確的欄位前置詞搜尋這些痕跡。
# Search successful traces
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
)
print(traces)
# 2 results
# Search failed traces
traces = mlflow.search_traces(
filter_string="attributes.status = 'ERROR'",
)
print(traces)
# 1 result
# Search all traces in experiment
traces = mlflow.search_traces()
print(traces)
# 3 results
# Search by single tag
traces = mlflow.search_traces(filter_string="tags.person = 'Tom'")
print(traces)
# 1 result
# Complex search combining tags and status
traces = mlflow.search_traces(
filter_string="tags.person = 'Tom' AND attributes.status = 'OK'"
)
print(traces)
# 1 result
# Search by timestamp
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {morning_time}")
print(traces)
# 1 result
API 參考資料
搜尋 API
使用 mlflow.search_traces()
搜尋和分析實驗中的蹤跡。
mlflow.search_traces(
experiment_ids: Optional[List[str]] = None, # Uses active experiment if not specified
filter_string: Optional[str] = None,
max_results: Optional[int] = None,
order_by: Optional[List[str]] = None,
extract_fields: Optional[List[str]] = None, # DataFrame column extraction (pandas only)
run_id: Optional[str] = None, # Filter traces by run ID
return_type: Optional[Literal["pandas", "list"]] = None, # Return type (default: pandas if available)
model_id: Optional[str] = None, # Search traces by model ID
sql_warehouse_id: Optional[str] = None # Databricks SQL warehouse ID
) -> Union[pandas.DataFrame, List[Trace]]
參數詳細資料:
參數 | 說明 |
---|---|
experiment_ids |
限定搜尋範圍的實驗 ID 清單。 如果未提供,則會在當前活躍的實驗中執行搜尋。 |
filter_string |
搜尋篩選字串。 |
max_results |
所希望的追蹤數目上限。 如果為 None,則會傳回符合搜尋表示式的所有追蹤。 |
order_by |
order_by 子句清單。 |
extract_fields |
使用格式 "span_name.[inputs\|outputs].field_name" 或 "span_name.[inputs\|outputs]" 指定要從追蹤中擷取的欄位。 |
run_id |
用來限定搜尋範圍的執行標識碼。 在活動執行中建立追蹤時,該追蹤會與執行相關聯,您可以根據執行 ID 過濾來擷取追蹤。 請參閱下列範例,以瞭解如何依執行標識符篩選追蹤。 |
return_type |
傳回值的型別。 支援下列傳回型別。 如果已安裝 pandas 連結庫,則預設傳回類型為 「pandas」。 否則,預設傳回類型為 「list」: • "pandas" :傳回 Pandas DataFrame,其中包含追蹤的相關信息,其中每個數據列代表單一追蹤,而每個數據行都代表追蹤的字段,例如trace_id、範圍等。• "list" : 傳回 :p y:class:Trace <mlflow.entities.Trace> 物件的清單。 |
model_id |
如有指定,搜索與指定模型 ID 相關聯的追蹤。 |
備註
MLflow 也提供 MlflowClient.search_traces()
。 不過,我們建議使用 mlflow.search_traces()
- 除了分頁支援之外,它也提供功能超集,其中包含更方便的預設值和其他功能,例如 DataFrame 輸出和字段擷取。
可搜尋的欄位參考
這很重要
如需這些欄位的完整參考,請參閱 追蹤數據模型。
欄位類型 | 搜尋路徑 | 運營商 | 價值觀 | 註釋 |
---|---|---|---|---|
中繼資料 | metadata.* |
= 、!= |
請參閱下方的詳細數據 | 僅適用於字串相等 |
標籤 | tags.* |
= 、!= |
請參閱下方的詳細數據 | 僅適用於字串相等 |
狀態 | attributes.status |
= 、!= |
OK 、ERROR 、IN_PROGRESS |
僅適用於字串相等 |
名稱 | attributes.name |
= 、!= |
追蹤名稱 | 僅適用於字串相等 |
時間戳 | attributes.timestamp_ms |
= 、< 、<= 、> 、>= |
建立時間 (自 epoch 以來的毫秒) | 數值比較 |
執行時間 | attributes.execution_time_ms |
= 、< 、<= 、> 、>= |
持續時間 (毫秒) | 數值比較 |
元數據詳情
以下中繼資料欄位可用於篩選:
-
metadata.mlflow.traceInputs
:要求內容 -
metadata.mlflow.traceOutputs
:回應內容 -
metadata.mlflow.sourceRun
:來源執行標識碼 -
metadata.mlflow.modelId
:模型標識碼 -
metadata.mlflow.trace.sizeBytes
:以位元組為單位的追蹤大小 -
metadata.mlflow.trace.tokenUsage
:匯總令牌使用資訊 (JSON 字串) -
metadata.mlflow.trace.user
:應用程式要求的使用者識別碼/名稱 -
metadata.mlflow.trace.session
:應用程式要求的會話標識碼
標記詳細數據
除了使用者定義的標記之外,還有下列系統定義的標籤可供使用:
-
mlflow.traceName
:追蹤的名稱 -
eval.requestId
:由mlflow.genai.evaluate()
設定的評估要求標識碼
篩選語法規則
-
所需的資料表前綴:一律使用
attributes.
、tags.
或metadata.
-
點的反引號:含有點 (dot) 的欄位需要使用反引號:
tags.`mlflow.traceName`
-
僅限單引號:字串值必須使用單引號:
'value'
- 區分大小寫:所有欄位名稱和值皆區分大小寫
- 僅限 AND:不支援 OR 運算元
依語法排序
# Single field ordering
order_by=["attributes.timestamp_ms DESC"]
order_by=["attributes.execution_time_ms ASC"]
# Multiple field ordering (applied in sequence)
order_by=[
"attributes.timestamp_ms DESC",
"attributes.execution_time_ms ASC"
]
# Supported fields for ordering
# - attributes.timestamp_ms (and aliases)
# - attributes.execution_time_ms (and aliases)
# - attributes.status
# - attributes.name
常見模式
# Status filtering
"attributes.status = 'OK'"
"attributes.status = 'ERROR'"
# Time-based queries
"attributes.timestamp_ms > 1749006880539"
"attributes.execution_time_ms > 5000"
# Tag searches
"tags.user_id = 'U001'"
"tags.`mlflow.traceName` = 'my_function'"
# Metadata queries
"metadata.`mlflow.user` = 'alice@company.com'"
"metadata.`mlflow.traceOutputs` != ''"
# Combined filters
"attributes.status = 'OK' AND tags.environment = 'production'"
"attributes.timestamp_ms > 1749006880539 AND attributes.execution_time_ms > 1000"
常見陷阱
❌ 不對 | ✅ 正確 | 問題 |
---|---|---|
status = 'OK' |
attributes.status = 'OK' |
遺漏前置詞 |
mlflow.user = 'alice' |
metadata.`mlflow.user` = 'alice' |
遺漏前置詞和反引號 |
timestamp > '2024-01-01' |
attributes.timestamp > 1704067200000 |
使用毫秒,而非字串 |
tags.env = "prod" |
tags.env = 'prod' |
使用單引號 |
status = 'OK' OR status = 'ERROR' |
使用個別的查詢 | 或不受支援 |
詳細的搜尋範例
依執行代碼搜尋
# Find all traces associated with a specific MLflow run
with mlflow.start_run() as run:
# Your traced code here
traced_result = my_traced_function()
# Search for traces from this run
run_traces = mlflow.search_traces(
run_id=run.info.run_id,
return_type="list" # Get list of Trace objects
)
控制件傳回類型
# Get results as pandas DataFrame (default if pandas is installed)
traces_df = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
return_type="pandas"
)
# Get results as list of Trace objects
traces_list = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
return_type="list"
)
# Access trace details from list
for trace in traces_list:
print(f"Trace ID: {trace.info.trace_id}")
print(f"Status: {trace.info.state}")
print(f"Duration: {trace.info.execution_duration}")
依模型標識碼搜尋
# Find traces associated with a specific MLflow model
model_traces = mlflow.search_traces(
model_id="my-model-123",
filter_string="attributes.status = 'OK'"
)
# Analyze model performance
print(f"Found {len(model_traces)} successful traces for model")
print(f"Average latency: {model_traces['execution_time_ms'].mean():.2f}ms")
依狀態搜尋
# Find successful traces
traces = mlflow.search_traces(filter_string="attributes.status = 'OK'")
# Find failed traces
traces = mlflow.search_traces(filter_string="attributes.status = 'ERROR'")
# Find in-progress traces
traces = mlflow.search_traces(filter_string="attributes.status = 'IN_PROGRESS'")
# Exclude errors
traces = mlflow.search_traces(filter_string="attributes.status != 'ERROR'")
依追蹤名稱搜尋
# Find traces with specific name (rarely used - legacy field)
traces = mlflow.search_traces(filter_string="attributes.name = 'foo'")
# Find traces excluding a specific name
traces = mlflow.search_traces(filter_string="attributes.name != 'test_trace'")
# Note: Most users should use tags.`mlflow.traceName` instead
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_request'"
)
依時間戳搜尋
import time
from datetime import datetime
# Current time in milliseconds
current_time_ms = int(time.time() * 1000)
# Last 5 minutes
five_minutes_ago = current_time_ms - (5 * 60 * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.timestamp_ms > {five_minutes_ago}"
)
# Specific date range
start_date = int(datetime(2024, 1, 1).timestamp() * 1000)
end_date = int(datetime(2024, 1, 31).timestamp() * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.timestamp_ms > {start_date} AND attributes.timestamp_ms < {end_date}"
)
# Using timestamp aliases
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {five_minutes_ago}")
依運行時間搜尋
# Find slow traces (>5 seconds)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms > 5000")
# Find fast traces (<100ms)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms < 100")
# Performance range
traces = mlflow.search_traces(
filter_string="attributes.execution_time_ms > 100 AND attributes.execution_time_ms < 1000"
)
# Using execution time aliases
traces = mlflow.search_traces(filter_string="attributes.latency > 1000")
依標籤搜尋
# Custom tags (set via mlflow.update_current_trace)
traces = mlflow.search_traces(filter_string="tags.customer_id = 'C001'")
traces = mlflow.search_traces(filter_string="tags.environment = 'production'")
traces = mlflow.search_traces(filter_string="tags.version = 'v2.1.0'")
# MLflow system tags (require backticks)
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_chat_request'"
)
traces = mlflow.search_traces(
filter_string="tags.`mlflow.artifactLocation` != ''"
)
依元數據搜尋
# Search by response content (exact match)
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.traceOutputs` = 'exact response text'"
)
# Find traces with any output
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.traceOutputs` != ''"
)
# Search by user
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.user` = 'alice@company.com'"
)
# Search by source file
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.source.name` = 'app.py'"
)
# Search by git information
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.source.git.branch` = 'main'"
)
使用 AND 的複雜篩選
# Recent successful production traces
current_time_ms = int(time.time() * 1000)
one_hour_ago = current_time_ms - (60 * 60 * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.status = 'OK' AND "
f"attributes.timestamp_ms > {one_hour_ago} AND "
f"tags.environment = 'production'"
)
# Fast traces from specific user
traces = mlflow.search_traces(
filter_string="attributes.execution_time_ms < 100 AND "
"metadata.`mlflow.user` = 'alice@company.com'"
)
# Specific function with performance threshold
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_payment' AND "
"attributes.execution_time_ms > 1000"
)
排序結果
# Most recent first
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
order_by=["attributes.timestamp_ms DESC"]
)
# Fastest first
traces = mlflow.search_traces(
order_by=["attributes.execution_time_ms ASC"]
)
# Multiple sort criteria
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
order_by=[
"attributes.timestamp_ms DESC",
"attributes.execution_time_ms ASC"
]
)
DataFrame 作業
傳回的 mlflow.search_traces
DataFrame 包含下列資料列:
traces_df = mlflow.search_traces()
# Default columns
print(traces_df.columns)
# ['request_id', 'trace', 'timestamp_ms', 'status', 'execution_time_ms',
# 'request', 'response', 'request_metadata', 'spans', 'tags']
擷取範圍字段
# Extract specific span fields into DataFrame columns
traces = mlflow.search_traces(
extract_fields=[
"process_request.inputs.customer_id",
"process_request.outputs",
"validate_input.inputs",
"generate_response.outputs.message"
]
)
# Use extracted fields for evaluation dataset
eval_data = traces.rename(columns={
"process_request.inputs.customer_id": "customer",
"generate_response.outputs.message": "ground_truth"
})
建置動態查詢
def build_trace_filter(status=None, user=None, min_duration=None,
max_duration=None, tags=None, after_timestamp=None):
"""Build dynamic filter string from parameters"""
conditions = []
if status:
conditions.append(f"attributes.status = '{status}'")
if user:
conditions.append(f"metadata.`mlflow.user` = '{user}'")
if min_duration:
conditions.append(f"attributes.execution_time_ms > {min_duration}")
if max_duration:
conditions.append(f"attributes.execution_time_ms < {max_duration}")
if after_timestamp:
conditions.append(f"attributes.timestamp_ms > {after_timestamp}")
if tags:
for key, value in tags.items():
# Handle dotted tag names
if '.' in key:
conditions.append(f"tags.`{key}` = '{value}'")
else:
conditions.append(f"tags.{key} = '{value}'")
return " AND ".join(conditions) if conditions else None
# Usage
filter_string = build_trace_filter(
status="OK",
user="alice@company.com",
min_duration=100,
tags={"environment": "production", "mlflow.traceName": "process_order"}
)
traces = mlflow.search_traces(filter_string=filter_string)
實用範例參考
錯誤監視
監視和分析生產環境中的錯誤:
import mlflow
import time
import pandas as pd
def monitor_errors(experiment_name: str, hours: int = 1):
"""Monitor errors in the last N hours."""
# Calculate time window
current_time_ms = int(time.time() * 1000)
cutoff_time_ms = current_time_ms - (hours * 60 * 60 * 1000)
# Find all errors
failed_traces = mlflow.search_traces(
filter_string=f"attributes.status = 'ERROR' AND "
f"attributes.timestamp_ms > {cutoff_time_ms}",
order_by=["attributes.timestamp_ms DESC"]
)
if len(failed_traces) == 0:
print(f"No errors found in the last {hours} hour(s)")
return
# Analyze error patterns
print(f"Found {len(failed_traces)} errors in the last {hours} hour(s)\n")
# Group by function name
error_by_function = failed_traces.groupby('tags.mlflow.traceName').size()
print("Errors by function:")
print(error_by_function.to_string())
# Show recent error samples
print("\nRecent error samples:")
for _, trace in failed_traces.head(5).iterrows():
print(f"- {trace['request_preview'][:60]}...")
print(f" Function: {trace.get('tags.mlflow.traceName', 'unknown')}")
print(f" Time: {pd.to_datetime(trace['timestamp_ms'], unit='ms')}")
print()
return failed_traces
效能分析
分析效能特性並找出瓶頸:
def profile_performance(function_name: str = None, percentiles: list = [50, 95, 99]):
"""Profile performance metrics for traces."""
# Build filter
filter_parts = []
if function_name:
filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")
filter_string = " AND ".join(filter_parts) if filter_parts else None
# Get traces
traces = mlflow.search_traces(filter_string=filter_string)
if len(traces) == 0:
print("No traces found")
return
# Calculate percentiles
perf_stats = traces['execution_time_ms'].describe(percentiles=[p/100 for p in percentiles])
print(f"Performance Analysis ({len(traces)} traces)")
print("=" * 40)
for p in percentiles:
print(f"P{p}: {perf_stats[f'{p}%']:.1f}ms")
print(f"Mean: {perf_stats['mean']:.1f}ms")
print(f"Max: {perf_stats['max']:.1f}ms")
# Find outliers (>P99)
if 99 in percentiles:
p99_threshold = perf_stats['99%']
outliers = traces[traces['execution_time_ms'] > p99_threshold]
if len(outliers) > 0:
print(f"\nOutliers (>{p99_threshold:.0f}ms): {len(outliers)} traces")
for _, trace in outliers.head(3).iterrows():
print(f"- {trace['execution_time_ms']:.0f}ms: {trace['request_preview'][:50]}...")
return traces
用戶活動分析
追蹤與分析使用者行為模式:
def analyze_user_activity(user_id: str, days: int = 7):
"""Analyze activity patterns for a specific user."""
cutoff_ms = int((time.time() - days * 86400) * 1000)
traces = mlflow.search_traces(
filter_string=f"metadata.`mlflow.user` = '{user_id}' AND "
f"attributes.timestamp_ms > {cutoff_ms}",
order_by=["attributes.timestamp_ms DESC"]
)
if len(traces) == 0:
print(f"No activity found for user {user_id}")
return
print(f"User {user_id} Activity Report ({days} days)")
print("=" * 50)
print(f"Total requests: {len(traces)}")
# Daily activity
traces['date'] = pd.to_datetime(traces['timestamp_ms'], unit='ms').dt.date
daily_activity = traces.groupby('date').size()
print(f"\nDaily activity:")
print(daily_activity.to_string())
# Query categories
if 'tags.query_category' in traces.columns:
categories = traces['tags.query_category'].value_counts()
print(f"\nQuery categories:")
print(categories.to_string())
# Performance stats
print(f"\nPerformance:")
print(f"Average response time: {traces['execution_time_ms'].mean():.1f}ms")
print(f"Error rate: {(traces['status'] == 'ERROR').mean() * 100:.1f}%")
return traces
最佳做法
1.設計一致的標記策略
為您的組織建立標記分類法:
class TraceTagging:
"""Standardized tagging strategy for traces."""
# Required tags for all traces
REQUIRED_TAGS = ["environment", "version", "service_name"]
# Category mappings
CATEGORIES = {
"user_management": ["login", "logout", "profile_update"],
"content_generation": ["summarize", "translate", "rewrite"],
"data_retrieval": ["search", "fetch", "query"]
}
@staticmethod
def tag_trace(operation: str, **kwargs):
"""Apply standardized tags to current trace."""
tags = {
"operation": operation,
"timestamp": datetime.now().isoformat(),
"service_name": "genai-platform"
}
# Add category based on operation
for category, operations in TraceTagging.CATEGORIES.items():
if operation in operations:
tags["category"] = category
break
# Add custom tags
tags.update(kwargs)
# Validate required tags
for required in TraceTagging.REQUIRED_TAGS:
if required not in tags:
tags[required] = "unknown"
mlflow.update_current_trace(tags=tags)
return tags
2.建置可重複使用的搜尋公用程式
class TraceSearcher:
"""Reusable trace search utilities."""
def __init__(self, experiment_ids: list = None):
self.experiment_ids = experiment_ids
def recent_errors(self, hours: int = 1) -> pd.DataFrame:
"""Get recent error traces."""
cutoff = int((time.time() - hours * 3600) * 1000)
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"attributes.status = 'ERROR' AND "
f"attributes.timestamp_ms > {cutoff}",
order_by=["attributes.timestamp_ms DESC"]
)
def slow_operations(self, threshold_ms: int = 5000) -> pd.DataFrame:
"""Find operations slower than threshold."""
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"attributes.execution_time_ms > {threshold_ms}",
order_by=["attributes.execution_time_ms DESC"]
)
def by_user(self, user_id: str, days: int = 7) -> pd.DataFrame:
"""Get traces for a specific user."""
cutoff = int((time.time() - days * 86400) * 1000)
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"tags.user_id = '{user_id}' AND "
f"attributes.timestamp_ms > {cutoff}",
order_by=["attributes.timestamp_ms DESC"]
)
def by_category(self, category: str, status: str = None) -> pd.DataFrame:
"""Get traces by category with optional status filter."""
filters = [f"tags.category = '{category}'"]
if status:
filters.append(f"attributes.status = '{status}'")
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=" AND ".join(filters)
)
def performance_report(self, function_name: str = None) -> dict:
"""Generate performance report."""
filter_parts = []
if function_name:
filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")
filter_string = " AND ".join(filter_parts) if filter_parts else None
traces = mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=filter_string
)
if len(traces) == 0:
return {"error": "No traces found"}
return {
"total_traces": len(traces),
"error_rate": (traces['status'] == 'ERROR').mean(),
"avg_duration_ms": traces['execution_time_ms'].mean(),
"p50_duration_ms": traces['execution_time_ms'].quantile(0.5),
"p95_duration_ms": traces['execution_time_ms'].quantile(0.95),
"p99_duration_ms": traces['execution_time_ms'].quantile(0.99)
}
# Usage example
searcher = TraceSearcher()
errors = searcher.recent_errors(hours=24)
slow_ops = searcher.slow_operations(threshold_ms=10000)
user_traces = searcher.by_user("U001", days=30)
report = searcher.performance_report("process_request")