共用方式為


CREATE VIEW

適用於:選取是Databricks SQL 選取是Databricks Runtime

建構虛擬數據表,此虛擬數據表沒有根據 SQL 查詢的結果集或以 yaml 規格為基礎的計量檢視。 ALTER VIEWDROP VIEW 只會變更元數據。

若要執行此語句,您必須是中繼存放區系統管理員,或具有 USE CATALOG 目錄和架構的許可權、USE SCHEMA 目錄和架構的許可權,以及 CREATE TABLE 目標架構中的許可權。

執行此命令的使用者將會成為檢視的擁有者。

語法

CREATE [ OR REPLACE ] [ TEMPORARY ] VIEW [ IF NOT EXISTS ] view_name
    [ column_list ]
    [ with_clause |
      COMMENT view_comment |
      DEFAULT COLLATION collation_name |
      TBLPROPERTIES clause |
      LANGUAGE YAML ] [...]
    AS { query | $$ yaml_string $$ }

with_clause
   WITH { { schema_binding | METRICS } |
          ( { schema_binding | METRICS } [, ...] } )

schema_binding
   WITH SCHEMA { BINDING | COMPENSATION | [ TYPE ] EVOLUTION }

column_list
   ( { column_alias [ COMMENT column_comment ] } [, ...] )

參數

  • 或取代

    如果已有相同名稱的檢視存在,則會加以取代。 若要取代現有的檢視,您必須是其擁有者。

    取代現有的檢視並不會保留在原始檢視或 table_id 上所授予的權限。 使用 ALTER VIEW 來保留許可權。

    CREATE OR REPLACE VIEW view_name 相當於 DROP VIEW IF EXISTS view_name,後面接著 CREATE VIEW view_name

  • 暫時的

    TEMPORARY 檢視只會顯示在建立這些檢視的會話中,而且會在會話結束時卸除。

  • 全域暫存

    適用於:勾選「是」 Databricks Runtime

    GLOBAL TEMPORARY 檢視會繫結至系統保留的暫存架構 global_temp

  • 如果不存在

    只有在檢視不存在時,才會建立檢視。 CREATE VIEW 語句將被忽略,如果同名的視圖已經存在。

    您最多可以指定 IF NOT EXISTSOR REPLACE 中的一個。

  • view_name

    新建立的檢視的名稱。 暫存檢視的名稱不得限定。 完整檢視名稱必須唯一。

    hive_metastore 中建立的檢視名稱只能包含英文字母、數字和下劃線(INVALID_SCHEMA_OR_RELATION_NAME)。

  • 指標

    適用於:標記為 是 Databricks SQL 標記為 是 Databricks Runtime 16.4 和更高版本 標記為 是 Unity Catalog 仅适用

    將檢視識別為計量檢視。 檢視必須以 LANGUAGE YAML 定義,而且檢視主體必須是有效的 yaml 規格。

    在 Databricks Runtime 17.2 之前,暫時檢視不支援此子句。

    計量檢視不支援 DEFAULT COLLATIONschema_binding 子句。

    計量檢視的 YAML 規格定義了 dimensionsmeasuresdimensions是檢視的數據行,叫用者可以匯總量值,而 measures 定義檢視的匯總。

    計量檢視的叫用者會使用 量值 表達式來存取已定義的量值,而不是指定聚合函數。

  • schema_binding

    適用於:選取標示為「是」 Databricks Runtime 15.3 和更新版本

    選擇性地指定檢視如何因基礎物件定義中的變更而適應查詢架構的變更。

    暫存檢視、計量檢視或具體化檢視不支持這個子句。

    • SCHEMA 捆綁

      如果查詢資料列清單變更,但下列條件除外,檢視會變成無效:

      • 欄位清單包含星號子句,此外還有其他欄位。 會忽略這些額外的欄。
      • 一或多個數據行的類型會以允許它們使用隱含轉換規則安全地轉換成原始數據行類型的方式變更。
    • SCHEMA 補償

      如果查詢資料列清單變更,但下列條件除外,檢視會變成無效:

      • 欄位清單包含星號子句,此外還有其他欄位。 會忽略這些額外的欄。
      • 一個或多個數據行的類型會以允許它們使用明確的 ANSI 轉換規則轉換成原始數據行類型的方式變更。

      此為預設行為。

    • SCHEMA 類型演進

      當 SQL 編譯程式偵測到這類變更以響應檢視的參考時,檢視會將查詢資料行清單中類型的任何變更採用到自己的定義中。

    • SCHEMA 演化

      • 這種模式的行為就像 SCHEMA TYPE EVOLUTION,如果檢視不包含明確的 column_list,也會採用欄位名稱的變更,或新增和刪除的欄位。
      • 只有當查詢無法再解析,或可選檢視 column_list 不再匹配 query select-list 中的運算式數目時,檢視才會變成無效。
  • column_list

    選擇性地在檢視的查詢結果中標記數據行。 如果您提供一個欄位清單,欄位別名的數目必須與查詢中的表達式數目一致,或在度量檢視的情況下,必須符合 YAML 規格。 如果未指定欄位清單,別名將從檢視的主體中衍生。

    • column_alias

      欄位別名必須是唯一的。

    • column_comment

      描述欄位別名的可選擇的 STRING 常值。

  • view_comment

    提供檢視層級註解的可選 STRING 常數。

  • 預設定序 collation_name

    適用於:已勾選為是 Databricks SQL 已勾選為是 Databricks Runtime 16.3 和以上版本

    定義在 query內使用的預設排序規則。 如果未指定,預設的排序規則會衍生自建立檢視定義的模式。

    度量檢視不支持此子句。

  • TBLPROPERTIES

    選擇性地設定一個或多個使用者定義的屬性。

  • AS 查詢

    從基表或其他視圖建構檢視的查詢。

    度量檢視不支持此子句。

  • 作為$$ yaml_string $$

    定義計量檢視的 yaml 規格。

範例

-- Create or replace view for `experienced_employee` with comments.
> CREATE OR REPLACE VIEW experienced_employee
    (id COMMENT 'Unique identification number', Name)
    COMMENT 'View for experienced employees'
    AS SELECT id, name
         FROM all_employee
        WHERE working_years > 5;

-- Create a temporary view `subscribed_movies`.
> CREATE TEMPORARY VIEW subscribed_movies
    AS SELECT mo.member_id, mb.full_name, mo.movie_title
         FROM movies AS mo
         INNER JOIN members AS mb
            ON mo.member_id = mb.id;

-- Create a view with schema binding (default)
> CREATE TABLE emp(name STRING, income INT);
> CREATE VIEW emp_v WITH SCHEMA BINDING AS SELECT * FROM emp;

– The view ignores adding a column to the base table
> ALTER TABLE emp ADD COLUMN bonus SMALLINT;
> SELECT * FROM emp_v;
name  income
----  ------

-- The view tolerates narrowing the underlying type
> CREATE OR REPLACE TABLE emp(name STRING, income SMALLINT, bonus SMALLINT);
> SELECT typeof(income) FROM emp_v;
 INTEGER

– The view does not tolerate widening the underlying type
CREATE OR REPLACE TABLE emp(name STRING, income BIGINT, bonus SMALLINT);
> SELECT typeof(income) FROM emp_v;
 Error

– Create a view with SCHEMA COMPENSATION
> CREATE TABLE emp(name STRING, income SMALLINT, bonus SMALLINT);
> CREATE VIEW emp_v WITH SCHEMA COMPENSATION AS SELECT * FROM emp;

-- The view tolerates widening the underlying type but keeps its own signature fixed
CREATE OR REPLACE TABLE emp(name STRING, income INTEGER, bonus INTEGER);
> SELECT typeof(income) FROM emp_v;
 INTEGER

-- The view does not tolerate dropping a needed column
ALTER TABLE emp DROP COLUMN bonus;
> SELECT * FROM emp_v;
Error

– Create a view with SCHEMA EVOLUTION
> CREATE TABLE emp(name STRING, income SMALLINT);
> CREATE VIEW emp_v WITH SCHEMA EVOLUTION AS SELECT * FROM emp;

-- The view picks up additional columns
> ALTER TABLE emp ADD COLUMN bonus SMALLINT
> SELECT * FROM emp_v;
 name income bonus
 ---- ------ -----

-- The view picks up renamed columns as well
> ALTER TABLE emp RENAME COLUMN income TO salary SMALLINT;
> SELECT * FROM emp_v;
 name salary bonus
 ---- ------ -----

-- The view picks up changes to column types and dropped columns
> CREATE OR REPLACE TABLE emp(name STRING, salary BIGINT);
> SELECT *, typeof(salary)AS salary_type FROM emp_v;
 name salary
 ---- ------

-- Create a view using a default collation of UTF8_BINARY
> CREATE VIEW v DEFAULT COLLATION UTF8_BINARY
    AS SELECT 5::STRING AS text;

-- Creates a Metric View as specified in the YAML definition, with three dimensions and four measures representing the count of orders.
> CREATE OR REPLACE VIEW region_sales_metrics
  (month COMMENT 'Month order was made',
   status,
   order_priority,
   count_orders COMMENT 'Count of orders',
   total_Revenue,
   total_revenue_per_customer,
   total_revenue_for_open_orders)
  WITH METRICS
  LANGUAGE YAML
  COMMENT 'A Metric View for regional sales metrics.'
  AS $$
   version: 0.1
   source: samples.tpch.orders
   filter: o_orderdate > '1990-01-01'
   dimensions:
   - name: month
     expr: date_trunc('MONTH', o_orderdate)
   - name: status
     expr: case
       when o_orderstatus = 'O' then 'Open'
       when o_orderstatus = 'P' then 'Processing'
       when o_orderstatus = 'F' then 'Fulfilled'
       end
   - name: prder_priority
     expr: split(o_orderpriority, '-')[1]
   measures:
   - name: count_orders
     expr: count(1)
   - name: total_revenue
     expr: SUM(o_totalprice)
   - name: total_revenue_per_customer
     expr: SUM(o_totalprice) / count(distinct o_custkey)
   - name: total_revenue_for_open_orders
     expr: SUM(o_totalprice) filter (where o_orderstatus='O')
  $$;

> DESCRIBE EXTENDED region_sales_metrics;
  col_name                       data_type
  ------------------------------ --------------------------
  month                          timestamp
  status                         string
  order_priority                 string
  count_orders                   bigint measure
  total_revenue                  decimal(28,2) measure
  total_revenue_per_customer     decimal(38,12) measure
  total_revenue_for_open_orders  decimal(28,2) measure

  # Detailed Table Information
  Catalog                        main
  Database                       default
  Table                          region_sales_metrics
  Owner                          alf@melmak.et
  Created Time                   Thu May 15 13:03:01 UTC 2025
  Last Access                    UNKNOWN
  Created By                     Spark
  Type                           METRIC_VIEW
  Comment                        A Metric View for regional sales metrics.
  Use Remote Filtering           false
  View Text                      "
     version: 0.1
     source: samples.tpch.orders
     filter: o_orderdate > '1990-01-01'
     dimensions:
     - name: month
       expr: date_trunc('MONTH', o_orderdate)
     - name: status
       expr: case
         when o_orderstatus = 'O' then 'Open'
         when o_orderstatus = 'P' then 'Processing'
         when o_orderstatus = 'F' then 'Fulfilled'
         end
     - name: Order_Priority
       expr: split(o_orderpriority, '-')[1]
     measures:
     - name: count_orders
       expr: count(1)
     - name: total_Revenue
       expr: SUM(o_totalprice)
     - name: total_Revenue_per_Customer
       expr: SUM(o_totalprice) / count(distinct o_custkey)
     - name: Total_Revenue_for_Open_Orders
       expr: SUM(o_totalprice) filter (where o_orderstatus='O')
                                 "
  Language                       YAML
  Table Properties               [metric_view.from.name=samples.tpch.orders, metric_view.from.type=ASSET, metric_view.where=o_orderdate > '1990-01-01']

-- Tracking total_revenue_per_customer by month in 1995
> SELECT extract(month from month) as month,
    measure(total_revenue_per_customer)::bigint AS total_revenue_per_customer
  FROM region_sales_metrics
  WHERE extract(year FROM month) = 1995
  GROUP BY ALL
  ORDER BY ALL;
  month	 total_revenue_per_customer
  -----  --------------------------
   1     167727
   2     166237
   3     167349
   4     167604
   5     166483
   6     167402
   7     167272
   8     167435
   9     166633
  10     167441
  11     167286
  12     167542

-- Tracking total_revenue_per_customer by month and status in 1995
> SELECT extract(month from month) as month,
    status,
    measure(total_revenue_per_customer)::bigint AS total_revenue_per_customer
  FROM region_sales_metrics
  WHERE extract(year FROM month) = 1995
  GROUP BY ALL
  ORDER BY ALL;
  month  status      total_revenue_per_customer
  -----  ---------   --------------------------
   1     Fulfilled   167727
   2     Fulfilled   161720
   2    Open          40203
   2    Processing   193412
   3    Fulfilled    121816
   3    Open          52424
   3    Processing   196304
   4    Fulfilled     80405
   4    Open          75630
   4    Processing   196136
   5    Fulfilled     53460
   5    Open         115344
   5    Processing   196147
   6    Fulfilled     42479
   6    Open         160390
   6    Processing   193461
   7    Open         167272
   8    Open         167435
   9    Open         166633
   10   Open         167441
   11   Open         167286
   12   Open         167542