共用方式為


chi_squared_distribution 類別

產生卡方分佈。

語法

template<class RealType = double>
class chi_squared_distribution {
public:
    // types
    typedef RealType result_type;
    struct param_type;

    // constructor and reset functions
    explicit chi_squared_distribution(RealType n = 1);
    explicit chi_squared_distribution(const param_type& parm);
    void reset();

    // generating functions
    template <class URNG>
    result_type operator()(URNG& gen);
    template <class URNG>
    result_type operator()(URNG& gen, const param_type& parm);

    // property functions
    RealType n() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
};

參數

RealType
浮點結果類型,預設值為 double。 如需可能的類型,請參閱 <隨機>

URNG
統一隨機數產生器引擎。 如需可能的類型,請參閱 <隨機>

備註

類別範本描述一個分佈,其會產生使用者指定的浮點類型值,或 double 如果未提供任何值,則根據 Chi-Squared 散發。 下表提供各個成員的文章連結。

chi_squared_distribution
param_type

屬性函式 n() 會傳回儲存的分佈參數 n 的值。

屬性成員 param() 會設定或傳回 param_type 預存分佈參數套件。

min()max() 成員函式會分別傳回最小可能結果和最大可能結果。

reset() 成員函式會捨棄任何快取的值,讓下個針對 operator() 呼叫的結果不是取決於呼叫之前取自引擎的任何值。

operator() 成員函式會根據 URNG 引擎傳回下一個產生的值,無論是從目前的參數封裝或是指定的參數封裝。

如需散發類別及其成員的詳細資訊,請參閱 <隨機>

如需卡方分佈的詳細資訊,請參閱 Wolfram MathWorld 文章:Chi-Squared Distribution (卡方分佈)。

範例

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const double n, const int s) {

    // uncomment to use a non-deterministic generator
    //    std::random_device gen;
    std::mt19937 gen(1701);

    std::chi_squared_distribution<> distr(n);

    std::cout << std::endl;
    std::cout << "min() == " << distr.min() << std::endl;
    std::cout << "max() == " << distr.max() << std::endl;
    std::cout << "n() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.n() << std::endl;

    // generate the distribution as a histogram
    std::map<double, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Distribution for " << s << " samples:" << std::endl;
    int counter = 0;
    for (const auto& elem : histogram) {
        std::cout << std::fixed << std::setw(11) << ++counter << ": "
            << std::setw(14) << std::setprecision(10) << elem.first << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    double n_dist = 0.5;
    int samples = 10;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter a floating point value for the \'n\' distribution parameter (must be greater than zero): ";
    std::cin >> n_dist;
    std::cout << "Enter an integer value for the sample count: ";
    std::cin >> samples;

    test(n_dist, samples);
}

第一次執行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .5
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 0.5000000000
Distribution for 10 samples:
    1: 0.0007625595
    2: 0.0016895062
    3: 0.0058683478
    4: 0.0189647765
    5: 0.0556619371
    6: 0.1448191353
    7: 0.1448245325
    8: 0.1903494379
    9: 0.9267525768
    10: 1.5429743723

第二次執行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .3333
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 0.3333000000
Distribution for 10 samples:
    1: 0.0000148725
    2: 0.0000490528
    3: 0.0003175988
    4: 0.0018454535
    5: 0.0092808795
    6: 0.0389540735
    7: 0.0389562514
    8: 0.0587028468
    9: 0.6183666639
    10: 1.3552086624

第三次執行:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1000
Enter an integer value for the sample count: 10

min() == 4.94066e-324
max() == 1.79769e+308
n() == 1000.0000000000
Distribution for 10 samples:
    1: 958.5284624473
    2: 958.7882787809
    3: 963.0667684792
    4: 987.9638091514
    5: 1016.2433493745
    6: 1021.9337111110
    7: 1021.9723046240
    8: 1035.7622110505
    9: 1043.8725156645
    10: 1054.7051509381

需求

標頭:<random>

命名空間:std

chi_squared_distribution::chi_squared_distribution

建構分佈。

explicit chi_squared_distribution(result_type n = 1.0);
explicit chi_squared_distribution(const param_type& parm);

參數

n
n 分佈參數。

parm
用於建構分佈的參數結構。

備註

前置條件:0.0 < n

第一個建構函式建構的物件,其預存的 n 值具有 n 值。

第二個建構函式會建構預存參數是從 parm 初始化而來的物件。 您可以呼叫 param() 成員函式,取得及設定現有分佈的目前參數。

chi_squared_distribution::param_type

儲存分佈的參數。

struct param_type {
   typedef chi_squared_distribution<result_type> distribution_type;
   param_type(result_type n = 1.0);
   result_type n() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

參數

n
n 分佈參數。

right
要與這個項目比較的 param_type 物件。

備註

前置條件:0.0 < n

此結構可在具現化時傳遞至分佈的類別建構函式,傳遞至 param() 成員函式可設定現有分佈之儲存的參數,傳遞至 operator() 可用於取代儲存的參數。

另請參閱

<random>