Lazy<T> 建構函式
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
初始化 Lazy<T> 類別的新實例。
多載
Lazy<T>() |
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標類型的無參數建構函式。 |
Lazy<T>(Boolean) |
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標型別的無參數建構函式和指定的初始化模式。 |
Lazy<T>(Func<T>) |
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式。 |
Lazy<T>(LazyThreadSafetyMode) |
初始化 Lazy<T> 類別的新實例,這個實例會使用 |
Lazy<T>(T) |
初始化 Lazy<T> 類別的新實例,這個實例使用預先初始化的指定值。 |
Lazy<T>(Func<T>, Boolean) |
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式和初始化模式。 |
Lazy<T>(Func<T>, LazyThreadSafetyMode) |
使用指定的初始化函式和線程安全模式,初始化 Lazy<T> 類別的新實例。 |
Lazy<T>()
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標類型的無參數建構函式。
public:
Lazy();
public Lazy ();
Public Sub New ()
範例
下列範例示範使用此建構函式。 它也說明如何使用 Lazy<T>(Boolean) 建構函式(指定 isThreadSafe
的 true
),以及 Lazy<T>(LazyThreadSafetyMode) 建構函式(指定 mode
的 LazyThreadSafetyMode.ExecutionAndPublication)。 若要切換至不同的建構函式,只要變更批注的建構函式即可。
此範例會定義一個 LargeObject
類別,這個類別將由數個線程之一初始化。 此範例中的兩個主要程式碼行是建立初始化表達式和實際的初始化。 在 Main
方法的開頭,此範例會為 LargeObject
建立安全線程延遲初始化表達式:
lazyLargeObject = new Lazy<LargeObject>();
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(true);
//lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication);
let lazyLargeObject = Lazy<LargeObject>()
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(true)
// let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication)
lazyLargeObject = New Lazy(Of LargeObject)()
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(True)
'lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.ExecutionAndPublication)
此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 這三個線程所使用的 ThreadProc
方法會呼叫 Value 屬性,以取得 LargeObject
實例:
LargeObject large = lazyLargeObject.Value;
let large = lazyLargeObject.Value
Dim large As LargeObject = lazyLargeObject.Value
Lazy<T> 類別提供鎖定,因此只允許一個線程建立 LargeObject
實例。 此範例示範其他線程都會取得相同的實例。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>();
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(true);
//lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication);
Console.WriteLine(
"\r\nLargeObject is not created until you access the Value property of the lazy" +
"\r\ninitializer. Press Enter to create LargeObject.");
Console.ReadLine();
// Create and start 3 threads, passing the same blocking event to all of them.
ManualResetEvent startingGate = new ManualResetEvent(false);
Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
foreach (Thread t in threads)
{
t.Start(startingGate);
}
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(100);
startingGate.Set();
// Wait for all 3 threads to finish. (The order doesn't matter.)
foreach (Thread t in threads)
{
t.Join();
}
Console.WriteLine("\r\nPress Enter to end the program");
Console.ReadLine();
}
static void ThreadProc(object state)
{
// Wait for the signal.
ManualResetEvent waitForStart = (ManualResetEvent) state;
waitForStart.WaitOne();
LargeObject large = lazyLargeObject.Value;
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5);
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
}
class LargeObject
{
int initBy = 0;
public int InitializedBy { get { return initBy; } }
public LargeObject()
{
initBy = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.
LargeObject was created on thread id 4.
Initialized by thread 4; last used by thread 3.
Initialized by thread 4; last used by thread 4.
Initialized by thread 4; last used by thread 5.
Press Enter to end the program
*/
open System
open System.Threading
type LargeObject() =
let initBy = Thread.CurrentThread.ManagedThreadId
do
printfn $"LargeObject was created on thread id {initBy}."
member val Data = Array.zeroCreate<int64> 100000000 with get
member _.InitializedBy = initBy
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>()
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(true)
// let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication)
let threadProc (state: obj) =
// Wait for the signal.
let waitForStart = state :?> ManualResetEvent
waitForStart.WaitOne() |> ignore
let large = lazyLargeObject.Value
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep 5
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}." )
printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine() |> ignore
// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads = [| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
t.Start startingGate
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 100
startingGate.Set() |> ignore
// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
t.Join()
printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// LargeObject is not created until you access the Value property of the lazy
// initializer. Press Enter to create LargeObject.
//
// LargeObject was created on thread id 4.
// Initialized by thread 4 last used by thread 3.
// Initialized by thread 4 last used by thread 4.
// Initialized by thread 4 last used by thread 5.
//
// Press Enter to end the program
Imports System.Threading
Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)()
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(True)
'lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.ExecutionAndPublication)
Console.WriteLine( _
vbCrLf & "LargeObject is not created until you access the Value property of the lazy" _
& vbCrLf & "initializer. Press Enter to create LargeObject.")
Console.ReadLine()
' Create and start 3 threads, passing the same blocking event to all of them.
Dim startingGate As New ManualResetEvent(False)
Dim threads() As Thread = { New Thread(AddressOf ThreadProc),
New Thread(AddressOf ThreadProc), New Thread(AddressOf ThreadProc) }
For Each t As Thread In threads
t.Start(startingGate)
Next t
' Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(100)
startingGate.Set()
' Wait for all 3 threads to finish. (The order doesn't matter.)
For Each t As Thread In threads
t.Join()
Next t
Console.WriteLine(vbCrLf & "Press Enter to end the program")
Console.ReadLine()
End Sub
Private Shared Sub ThreadProc(ByVal state As Object)
' Wait for the signal.
Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
waitForStart.WaitOne()
Dim large As LargeObject = lazyLargeObject.Value
' The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5)
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
End Sub
End Class
Class LargeObject
Private initBy As Integer = 0
Public ReadOnly Property InitializedBy() As Integer
Get
Return initBy
End Get
End Property
Public Sub New()
initBy = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
End Sub
Public Data(100000000) As Long
End Class
' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'LargeObject was created on thread id 3.
'Initialized by thread 3; last used by thread 5.
'Initialized by thread 3; last used by thread 4.
'Initialized by thread 3; last used by thread 3.
'
'Press Enter to end the program
備註
使用這個建構函式建立的實例,可以同時從多個線程使用。
使用這個建構函式初始化之 Lazy<T> 實體的線程安全模式 LazyThreadSafetyMode.ExecutionAndPublication。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。
使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。
另請參閱
適用於
Lazy<T>(Boolean)
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標型別的無參數建構函式和指定的初始化模式。
public:
Lazy(bool isThreadSafe);
public Lazy (bool isThreadSafe);
new Lazy<'T> : bool -> Lazy<'T>
Public Sub New (isThreadSafe As Boolean)
參數
- isThreadSafe
- Boolean
true
讓多個線程同時使用此實例;false
讓實例一次只能使用一個線程。
範例
下列範例示範如何使用這個建構函式來建立非線程安全的延遲初始化表達式,以在相同線程上發生對延遲初始化物件的所有存取。 它也示範如何使用 Lazy<T>(LazyThreadSafetyMode) 建構函式(指定 mode
的 LazyThreadSafetyMode.None。 若要切換至不同的建構函式,只要變更已批注的建構函式即可。
注意
如需示範如何在多線程案例中使用這個建構函式的程式代碼(指定 isThreadSafe
的 true
),請參閱 Lazy<T>() 建構函式的範例。
此範例會定義將延遲初始化的 LargeObject
類別。 在 Main
方法中,此範例會建立 Lazy<T> 實例,然後暫停。 當您按下 Enter 鍵時,此範例會存取 Lazy<T> 實例的 Value 屬性,這會導致初始化。
LargeObject
類別的建構函式會顯示主控台訊息。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>(false);
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.None);
Console.WriteLine(
"\r\nLargeObject is not created until you access the Value property of the lazy" +
"\r\ninitializer. Press Enter to create LargeObject.");
Console.ReadLine();
LargeObject large = lazyLargeObject.Value;
large.Data[11] = 89;
Console.WriteLine("\r\nPress Enter to end the program");
Console.ReadLine();
}
}
class LargeObject
{
public LargeObject()
{
Console.WriteLine("LargeObject was created on thread id {0}.",
Thread.CurrentThread.ManagedThreadId);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.
LargeObject was created on thread id 1.
Press Enter to end the program
*/
open System
open System.Threading
type LargeObject () =
do
printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."
member val Data = Array.zeroCreate<int64> 100000000 with get
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> false
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.None)
printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine() |> ignore
let large = lazyLargeObject.Value
large.Data[11] <- 89
printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// LargeObject is not created until you access the Value property of the lazy
// initializer. Press Enter to create LargeObject.
//
// LargeObject was created on thread id 1.
//
// Press Enter to end the program
Imports System.Threading
Friend Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)(False)
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.None);
Console.WriteLine( _
vbCrLf & "LargeObject is not created until you access the Value property of the lazy" _
& vbCrLf & "initializer. Press Enter to create LargeObject.")
Console.ReadLine()
Dim large As LargeObject = lazyLargeObject.Value
large.Data(11) = 89
Console.WriteLine(vbCrLf & "Press Enter to end the program")
Console.ReadLine()
End Sub
End Class
Friend Class LargeObject
Public Sub New()
Console.WriteLine("LargeObject was created on thread id {0}.", _
Thread.CurrentThread.ManagedThreadId)
End Sub
Public Data(100000000) As Long
End Class
' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'LargeObject was created on thread id 1.
'
'Press Enter to end the program
備註
如果 isThreadSafe
是 true
,就會 LazyThreadSafetyMode.ExecutionAndPublication 使用此建構函式初始化之 Lazy<T> 實例的線程安全模式;否則,模式會 LazyThreadSafetyMode.None。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。 若要指定 LazyThreadSafetyMode.PublicationOnly 模式,請使用 Lazy<T>(Func<T>, LazyThreadSafetyMode) 或 Lazy<T>(LazyThreadSafetyMode) 建構函式。
使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。
另請參閱
適用於
Lazy<T>(Func<T>)
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式。
public:
Lazy(Func<T> ^ valueFactory);
public Lazy (Func<T> valueFactory);
new Lazy<'T> : Func<'T> -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T))
參數
- valueFactory
- Func<T>
在需要時叫用以產生延遲初始化值的委派。
例外狀況
valueFactory
null
。
範例
下列範例示範使用此建構函式來提供延遲初始化與例外狀況快取。 它也示範如何使用 Lazy<T>(Func<T>, Boolean) 建構函式(指定 isThreadSafe
的 true
),以及 Lazy<T>(Func<T>, LazyThreadSafetyMode) 建構函式(指定 mode
的 LazyThreadSafetyMode.ExecutionAndPublication)。 若要切換至不同的建構函式,只要變更批注的建構函式即可。
此範例會定義一個 LargeObject
類別,這個類別將由數個線程之一初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject
類別的建構函式,示範例外狀況快取。 在 Main
方法的開頭,此範例會為 LargeObject
建立安全線程延遲初始化表達式:
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject);
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, true);
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication);
let lazyLargeObject = Lazy<LargeObject> initLargeObject
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, true)
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject)
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, True)
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)
此範例會建立並啟動三個線程。 這三個線程所使用的 ThreadProc
方法會呼叫 Value 屬性,以取得 LargeObject
實例:
try
{
LargeObject large = lazyLargeObject.Value;
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
catch (ApplicationException aex)
{
Console.WriteLine("Exception: {0}", aex.Message);
}
try
let large = lazyLargeObject.Value
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as aex ->
printfn $"Exception: {aex.Message}"
Try
Dim large As LargeObject = lazyLargeObject.Value
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
Catch aex As ApplicationException
Console.WriteLine("Exception: {0}", aex.Message)
End Try
在 LargeObject
類別的建構函式中,程序代碼的第三個索引鍵區段會在第一次建立 LargeObject
實例時擲回例外狀況,但之後允許實例建立:
static int instanceCount = 0;
public LargeObject()
{
if (1 == Interlocked.Increment(ref instanceCount))
{
throw new ApplicationException("Throw only ONCE.");
}
initBy = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
}
type LargeObject() =
static let mutable instanceCount = 0
let initBy = Thread.CurrentThread.ManagedThreadId
do
if 1 = Interlocked.Increment &instanceCount then
raise (ApplicationException "Throw only ONCE.")
printfn $"LargeObject was created on thread id {initBy}."
Private Shared instanceCount As Integer = 0
Public Sub New()
If 1 = Interlocked.Increment(instanceCount) Then
Throw New ApplicationException("Throw only ONCE.")
End If
initBy = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
End Sub
執行此範例時,嘗試建立 LargeObject
實例的第一個線程會失敗,並攔截例外狀況。 您可能會預期下一個線程會成功建立實例,但 Lazy<T> 物件已快取例外狀況。 因此,這三個線程都會擲回例外狀況。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
static LargeObject InitLargeObject()
{
return new LargeObject();
}
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject);
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, true);
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication);
Console.WriteLine(
"\r\nLargeObject is not created until you access the Value property of the lazy" +
"\r\ninitializer. Press Enter to create LargeObject.");
Console.ReadLine();
// Create and start 3 threads, each of which tries to use LargeObject.
Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
foreach (Thread t in threads)
{
t.Start();
}
// Wait for all 3 threads to finish. (The order doesn't matter.)
foreach (Thread t in threads)
{
t.Join();
}
Console.WriteLine("\r\nPress Enter to end the program");
Console.ReadLine();
}
static void ThreadProc(object state)
{
try
{
LargeObject large = lazyLargeObject.Value;
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
catch (ApplicationException aex)
{
Console.WriteLine("Exception: {0}", aex.Message);
}
}
}
class LargeObject
{
int initBy = 0;
public int InitializedBy { get { return initBy; } }
static int instanceCount = 0;
public LargeObject()
{
if (1 == Interlocked.Increment(ref instanceCount))
{
throw new ApplicationException("Throw only ONCE.");
}
initBy = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.
Exception: Throw only ONCE.
Exception: Throw only ONCE.
Exception: Throw only ONCE.
Press Enter to end the program
*/
open System
open System.Threading
type LargeObject() =
static let mutable instanceCount = 0
let initBy = Thread.CurrentThread.ManagedThreadId
do
if 1 = Interlocked.Increment &instanceCount then
raise (ApplicationException "Throw only ONCE.")
printfn $"LargeObject was created on thread id {initBy}."
member _.InitializedBy = initBy
member val Data = Array.zeroCreate<int64> 100000000
let initLargeObject () =
LargeObject()
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> initLargeObject
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, true)
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)
let threadProc _ =
try
let large = lazyLargeObject.Value
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as aex ->
printfn $"Exception: {aex.Message}"
printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine () |> ignore
// Create and start 3 threads, each of which tries to use LargeObject.
let threads =
[| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
t.Start()
// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
t.Join()
printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// LargeObject is not created until you access the Value property of the lazy
// initializer. Press Enter to create LargeObject.
//
// Exception: Throw only ONCE.
// Exception: Throw only ONCE.
// Exception: Throw only ONCE.
//
// Press Enter to end the program
Imports System.Threading
Friend Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
Private Shared Function InitLargeObject() As LargeObject
Return New LargeObject()
End Function
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject)
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, True)
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)
Console.WriteLine(vbCrLf _
& "LargeObject is not created until you access the Value property of the lazy" _
& vbCrLf & "initializer. Press Enter to create LargeObject.")
Console.ReadLine()
' Create and start 3 threads, each of which tries to use LargeObject.
Dim threads() As Thread = { New Thread(AddressOf ThreadProc), _
New Thread(AddressOf ThreadProc), New Thread(AddressOf ThreadProc) }
For Each t As Thread In threads
t.Start()
Next t
' Wait for all 3 threads to finish. (The order doesn't matter.)
For Each t As Thread In threads
t.Join()
Next t
Console.WriteLine(vbCrLf & "Press Enter to end the program")
Console.ReadLine()
End Sub
Private Shared Sub ThreadProc(ByVal state As Object)
Try
Dim large As LargeObject = lazyLargeObject.Value
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
Catch aex As ApplicationException
Console.WriteLine("Exception: {0}", aex.Message)
End Try
End Sub
End Class
Friend Class LargeObject
Private initBy As Integer = 0
Public ReadOnly Property InitializedBy() As Integer
Get
Return initBy
End Get
End Property
Private Shared instanceCount As Integer = 0
Public Sub New()
If 1 = Interlocked.Increment(instanceCount) Then
Throw New ApplicationException("Throw only ONCE.")
End If
initBy = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
End Sub
Public Data(99999999) As Long
End Class
' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'
'Press Enter to end the program
'
備註
使用這個建構函式建立的實例,可以同時從多個線程使用。
使用這個建構函式初始化之 Lazy<T> 實體的線程安全模式 LazyThreadSafetyMode.ExecutionAndPublication。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。
快取 valueFactory
擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。
另請參閱
適用於
Lazy<T>(LazyThreadSafetyMode)
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
初始化 Lazy<T> 類別的新實例,這個實例會使用 T
的無參數建構函式和指定的線程安全模式。
public:
Lazy(System::Threading::LazyThreadSafetyMode mode);
public Lazy (System.Threading.LazyThreadSafetyMode mode);
new Lazy<'T> : System.Threading.LazyThreadSafetyMode -> Lazy<'T>
Public Sub New (mode As LazyThreadSafetyMode)
參數
- mode
- LazyThreadSafetyMode
其中一個列舉值,指定線程安全模式。
例外狀況
mode
包含無效的值。
範例
下列範例示範使用此建構函式來建立延遲初始化表達式,讓多個線程競爭以延遲建立物件。 多個線程可能會成功建立實例,但所有線程都使用第一次建立的實例。
注意
如需示範如何在單個線程案例中使用這個建構函式的範例(指定 mode
的 LazyThreadSafetyMode.None),請參閱 Lazy<T>(Boolean) 建構函式。 如需示範如何使用這個建構函式在多線程案例中提供鎖定而非競爭條件的範例(指定 mode
的 LazyThreadSafetyMode.ExecutionAndPublication),請參閱 Lazy<T>() 建構函式。
此範例會定義一個 LargeObject
類別,這個類別將由數個線程中的任何一個延遲初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject
類別的建構函式和完成項。 在 Main
方法的開頭,此範例會建立執行 LargeObject
延遲初始化的 Lazy<T> 物件:
lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.PublicationOnly);
let lazyLargeObject = Lazy<LargeObject> LazyThreadSafetyMode.PublicationOnly
lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.PublicationOnly)
此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 在這三個線程所使用的 ThreadProc
方法中,呼叫 Value 屬性會建立 LargeObject
實例:
LargeObject large = lazyLargeObject.Value;
let large = lazyLargeObject.Value
Dim large As LargeObject = lazyLargeObject.Value
由於指定 LazyThreadSafetyMode.PublicationOnly之 Lazy<T> 實例的建構函式,因此允許這三個線程建立 LargeObject
實例。 此範例會示範這個方法,方法是在建構函式和 LargeObject
類別的完成項中顯示主控台訊息:
public LargeObject()
{
initBy = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}
~LargeObject()
{
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
type LargeObject() =
let initBy = Thread.CurrentThread.ManagedThreadId
do
printfn $"Constructor: Instance initializing on thread {initBy}"
override _.Finalize() =
printfn $"Finalizer: Instance was initialized on {initBy}"
Public Sub New()
initBy = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub
Protected Overrides Sub Finalize()
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub
不過,Lazy<T> 對象可確保所有線程只使用一個實例。 此範例的輸出顯示這三個線程都使用相同的實例,同時也顯示其他兩個實例可由垃圾收集回收。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.PublicationOnly);
// Create and start 3 threads, passing the same blocking event to all of them.
ManualResetEvent startingGate = new ManualResetEvent(false);
Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
foreach (Thread t in threads)
{
t.Start(startingGate);
}
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(50);
startingGate.Set();
// Wait for all 3 threads to finish. (The order doesn't matter.)
foreach (Thread t in threads)
{
t.Join();
}
Console.WriteLine(
"\r\nThreads are complete. Running GC.Collect() to reclaim the extra instances.");
GC.Collect();
// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep(100);
Console.WriteLine(
"\r\nNote that all three threads used the instance that was not collected.");
Console.WriteLine("Press Enter to end the program");
Console.ReadLine();
}
static void ThreadProc(object state)
{
// Wait for the signal.
ManualResetEvent waitForStart = (ManualResetEvent) state;
waitForStart.WaitOne();
LargeObject large = lazyLargeObject.Value;
// The following line introduces an artificial delay, to exaggerate the race
// condition.
Thread.Sleep(5);
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
}
class LargeObject
{
int initBy = -1;
public int InitializedBy { get { return initBy; } }
public LargeObject()
{
initBy = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}
~LargeObject()
{
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
Constructor: Instance initializing on thread 4
Constructor: Instance initializing on thread 3
Constructor: Instance initializing on thread 5
LargeObject was initialized by thread 4; last used by thread 4.
LargeObject was initialized by thread 4; last used by thread 5.
LargeObject was initialized by thread 4; last used by thread 3.
Threads are complete. Running GC.Collect() to reclaim the extra instances.
Finalizer: Instance was initialized on 3
Finalizer: Instance was initialized on 5
Note that all three threads used the instance that was not collected.
Press Enter to end the program
Instance finalizing; initialized on 4
*/
open System
open System.Threading
type LargeObject() =
let initBy = Thread.CurrentThread.ManagedThreadId
do
printfn $"Constructor: Instance initializing on thread {initBy}"
override _.Finalize() =
printfn $"Finalizer: Instance was initialized on {initBy}"
member _.InitializedBy = initBy
member val Data = Array.zeroCreate<int64> 100000000
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> LazyThreadSafetyMode.PublicationOnly
let threadProc (state: obj) =
// Wait for the signal.
let waitForStart = state :?> ManualResetEvent
waitForStart.WaitOne() |> ignore
let large = lazyLargeObject.Value
// The following line introduces an artificial delay, to exaggerate the race
// condition.
Thread.Sleep 5
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads =
[| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
t.Start startingGate
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 50
startingGate.Set() |> ignore
// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
t.Join()
printfn "\nThreads are complete. Running GC.Collect() to reclaim the extra instances."
GC.Collect()
// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep 100
printfn "\nNote that all three threads used the instance that was not collected."
printfn "Press Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// Constructor: Instance initializing on thread 4
// Constructor: Instance initializing on thread 3
// Constructor: Instance initializing on thread 5
// LargeObject was initialized by thread 4 last used by thread 4.
// LargeObject was initialized by thread 4 last used by thread 5.
// LargeObject was initialized by thread 4 last used by thread 3.
//
// Threads are complete. Running GC.Collect() to reclaim the extra instances.
// Finalizer: Instance was initialized on 3
// Finalizer: Instance was initialized on 5
//
// Note that all three threads used the instance that was not collected.
// Press Enter to end the program
//
// Instance finalizing initialized on 4
Imports System.Threading
Friend Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.PublicationOnly)
' Create and start 3 threads, passing the same blocking event to all of them.
Dim startingGate As New ManualResetEvent(False)
Dim threads() As Thread = { _
New Thread(AddressOf ThreadProc), _
New Thread(AddressOf ThreadProc), _
New Thread(AddressOf ThreadProc) _
}
For Each t As Thread In threads
t.Start(startingGate)
Next t
' Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(50)
startingGate.Set()
' Wait for all 3 threads to finish. (The order doesn't matter.)
For Each t As Thread In threads
t.Join()
Next t
Console.WriteLine(vbCrLf & _
"Threads are complete. Running GC.Collect() to reclaim the extra instances.")
GC.Collect()
' Allow time for garbage collection, which happens asynchronously.
Thread.Sleep(100)
Console.WriteLine(vbCrLf & _
"Note that all three threads used the instance that was not collected.")
Console.WriteLine("Press Enter to end the program")
Console.ReadLine()
End Sub
Private Shared Sub ThreadProc(ByVal state As Object)
' Wait for the signal.
Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
waitForStart.WaitOne()
Dim large As LargeObject = lazyLargeObject.Value
' The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5)
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine( _
"LargeObject was initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
End Sub
End Class
Friend Class LargeObject
Private initBy As Integer = -1
Public ReadOnly Property InitializedBy() As Integer
Get
Return initBy
End Get
End Property
Public Sub New()
initBy = Thread.CurrentThread.ManagedThreadId
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub
Protected Overrides Sub Finalize()
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub
Public Data(100000000) As Long
End Class
' This example produces output similar to the following:
'
'Constructor: Instance initializing on thread 3
'Constructor: Instance initializing on thread 5
'Constructor: Instance initializing on thread 4
'LargeObject was initialized by thread 3; last used by thread 4.
'LargeObject was initialized by thread 3; last used by thread 3.
'LargeObject was initialized by thread 3; last used by thread 5.
'
'Threads are complete. Running GC.Collect() to reclaim the extra instances.
'Finalizer: Instance was initialized on 5
'Finalizer: Instance was initialized on 4
'
'Note that all three threads used the instance that was not collected.
'Press Enter to end the program
'
'Finalizer: Instance was initialized on 3
'
備註
Lazy<T> 實例的線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。
使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。
另請參閱
適用於
Lazy<T>(T)
Lazy<T>(Func<T>, Boolean)
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式和初始化模式。
public:
Lazy(Func<T> ^ valueFactory, bool isThreadSafe);
public Lazy (Func<T> valueFactory, bool isThreadSafe);
new Lazy<'T> : Func<'T> * bool -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T), isThreadSafe As Boolean)
參數
- valueFactory
- Func<T>
在需要時叫用以產生延遲初始化值的委派。
- isThreadSafe
- Boolean
true
讓多個線程同時使用此實例;false
讓這個實例一次只能使用一個線程。
例外狀況
valueFactory
null
。
範例
下列範例示範如何使用這個建構函式,在具有單個線程的案例中,提供延遲初始化例外狀況快取。 它也示範如何使用 Lazy<T> 建構函式(指定 mode
的 LazyThreadSafetyMode.None)。 若要切換至該建構函式,只要變更已批注的建構函式即可。
注意
如需示範如何在多線程案例中使用這個建構函式的程式代碼(指定 isThreadSafe
的 true
),請參閱 Lazy<T>(Func<T>) 建構函式的範例。
此範例會定義一個 LargeObject
類別,這個類別將由數個線程之一初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject
類別的建構函式,示範例外狀況快取。 在 Main
方法的開頭,此範例會為 LargeObject
建立安全線程延遲初始化表達式:
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, false);
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.None);
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, false)
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.None)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, False)
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.None)
在對建構函式的呼叫中,isThreadSafe
參數是 false
,因此 Lazy<T> 不是安全線程。 因為不是安全線程,所以此範例會在相同的線程上呼叫 Value 屬性三次:
for (int i = 0; i < 3; i++)
{
try
{
LargeObject large = lazyLargeObject.Value;
large.Data[11] = 89;
}
catch (ApplicationException aex)
{
Console.WriteLine("Exception: {0}", aex.Message);
}
}
for _ = 0 to 2 do
try
let large = lazyLargeObject.Value
large.Data[11] <- 89
with :? ApplicationException as aex ->
printfn $"Exception: {aex.Message}"
For i As Integer = 0 To 2
Try
Dim large As LargeObject = lazyLargeObject.Value
large.Data(11) = 89
Catch aex As ApplicationException
Console.WriteLine("Exception: {0}", aex.Message)
End Try
Next i
在 LargeObject
類別的建構函式中,程序代碼的第三個索引鍵區段會在第一次建立 LargeObject
實例時擲回例外狀況,但之後允許實例建立:
static bool pleaseThrow = true;
public LargeObject()
{
if (pleaseThrow)
{
pleaseThrow = false;
throw new ApplicationException("Throw only ONCE.");
}
Console.WriteLine("LargeObject was created on thread id {0}.",
Thread.CurrentThread.ManagedThreadId);
}
type LargeObject() =
static let mutable pleaseThrow = true
do
if pleaseThrow then
pleaseThrow <- false
raise (ApplicationException "Throw only ONCE.")
printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."
Private Shared pleaseThrow As Boolean = True
Public Sub New()
If pleaseThrow Then
pleaseThrow = False
Throw New ApplicationException("Throw only ONCE.")
End If
Console.WriteLine("LargeObject was created on thread id {0}.", _
Thread.CurrentThread.ManagedThreadId)
End Sub
執行範例時,第一次嘗試建立 LargeObject
實例失敗,並攔截例外狀況。 您可能會預期下一次嘗試會成功,但 Lazy<T> 物件已快取例外狀況。 因此,這三次嘗試都會擲回例外狀況。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
static LargeObject InitLargeObject()
{
return new LargeObject();
}
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, false);
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.None);
Console.WriteLine(
"\r\nLargeObject is not created until you access the Value property of the lazy" +
"\r\ninitializer. Press Enter to create LargeObject (three tries).");
Console.ReadLine();
for (int i = 0; i < 3; i++)
{
try
{
LargeObject large = lazyLargeObject.Value;
large.Data[11] = 89;
}
catch (ApplicationException aex)
{
Console.WriteLine("Exception: {0}", aex.Message);
}
}
Console.WriteLine("\r\nPress Enter to end the program");
Console.ReadLine();
}
}
class LargeObject
{
static bool pleaseThrow = true;
public LargeObject()
{
if (pleaseThrow)
{
pleaseThrow = false;
throw new ApplicationException("Throw only ONCE.");
}
Console.WriteLine("LargeObject was created on thread id {0}.",
Thread.CurrentThread.ManagedThreadId);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject (three tries).
Exception: Throw only ONCE.
Exception: Throw only ONCE.
Exception: Throw only ONCE.
Press Enter to end the program
*/
open System
open System.Threading
type LargeObject() =
static let mutable pleaseThrow = true
do
if pleaseThrow then
pleaseThrow <- false
raise (ApplicationException "Throw only ONCE.")
printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."
member val Data = Array.zeroCreate<int64> 100000000
let initLargeObject () =
LargeObject()
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, false)
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
// let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.None)
printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject (three tries)."""
stdin.ReadLine() |> ignore
for _ = 0 to 2 do
try
let large = lazyLargeObject.Value
large.Data[11] <- 89
with :? ApplicationException as aex ->
printfn $"Exception: {aex.Message}"
printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// LargeObject is not created until you access the Value property of the lazy
// initializer. Press Enter to create LargeObject (three tries).
//
// Exception: Throw only ONCE.
// Exception: Throw only ONCE.
// Exception: Throw only ONCE.
//
// Press Enter to end the program
Imports System.Threading
Friend Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
Private Shared Function InitLargeObject() As LargeObject
Return New LargeObject()
End Function
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, False)
' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line:
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.None)
Console.WriteLine(vbCrLf _
& "LargeObject is not created until you access the Value property of the lazy" _
& vbCrLf & "initializer. Press Enter to create LargeObject (three tries).")
Console.ReadLine()
For i As Integer = 0 To 2
Try
Dim large As LargeObject = lazyLargeObject.Value
large.Data(11) = 89
Catch aex As ApplicationException
Console.WriteLine("Exception: {0}", aex.Message)
End Try
Next i
Console.WriteLine(vbCrLf & "Press Enter to end the program")
Console.ReadLine()
End Sub
End Class
Friend Class LargeObject
Private Shared pleaseThrow As Boolean = True
Public Sub New()
If pleaseThrow Then
pleaseThrow = False
Throw New ApplicationException("Throw only ONCE.")
End If
Console.WriteLine("LargeObject was created on thread id {0}.", _
Thread.CurrentThread.ManagedThreadId)
End Sub
Public Data(100000000) As Long
End Class
' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject (three tries).
'
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'
'Press Enter to end the program
'
備註
如果 isThreadSafe
是 true
,就會 LazyThreadSafetyMode.ExecutionAndPublication 使用此建構函式初始化之 Lazy<T> 實例的線程安全模式;否則,模式會 LazyThreadSafetyMode.None。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。
若要指定 LazyThreadSafetyMode.PublicationOnly 模式,請使用 Lazy<T>(Func<T>, LazyThreadSafetyMode) 或 Lazy<T>(LazyThreadSafetyMode) 建構函式。
快取 valueFactory
擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。
另請參閱
適用於
Lazy<T>(Func<T>, LazyThreadSafetyMode)
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
- 來源:
- Lazy.cs
使用指定的初始化函式和線程安全模式,初始化 Lazy<T> 類別的新實例。
public:
Lazy(Func<T> ^ valueFactory, System::Threading::LazyThreadSafetyMode mode);
public Lazy (Func<T> valueFactory, System.Threading.LazyThreadSafetyMode mode);
new Lazy<'T> : Func<'T> * System.Threading.LazyThreadSafetyMode -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T), mode As LazyThreadSafetyMode)
參數
- valueFactory
- Func<T>
在需要時叫用以產生延遲初始化值的委派。
- mode
- LazyThreadSafetyMode
其中一個列舉值,指定線程安全模式。
例外狀況
mode
包含無效的值。
valueFactory
null
。
範例
下列範例示範使用此建構函式來建立延遲初始化表達式,讓多個線程競爭以延遲建立物件。 多個線程可能會成功建立實例,但所有線程都使用第一次建立的實例。 此外,此範例示範當您指定 LazyThreadSafetyMode.PublicationOnly時,永遠不會快取例外狀況,即使初始化是由函式執行,而不是由延遲建立類型的無參數建構函式執行。
注意
如需示範如何在單個線程案例中使用這個建構函式的範例(指定 mode
的 LazyThreadSafetyMode.None),請參閱 Lazy<T>(Boolean) 建構函式。 如需示範如何使用這個建構函式在多線程案例中提供鎖定而非競爭條件的範例(指定 mode
的 LazyThreadSafetyMode.ExecutionAndPublication),請參閱 Lazy<T>() 建構函式。
此範例會定義一個 LargeObject
類別,這個類別將由數個線程中的任何一個延遲初始化。 程序代碼的四個主要區段說明如何建立初始化運算式、實際初始化、初始化函式,以及 LargeObject
類別的建構函式和完成項。 在 Main
方法的開頭,此範例會建立執行 LargeObject
延遲初始化的 Lazy<T> 物件:
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject,
LazyThreadSafetyMode.PublicationOnly);
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.PublicationOnly)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, _
LazyThreadSafetyMode.PublicationOnly)
延遲初始化表示式會使用 函式來執行初始化。 在此情況下,需要函式,因為沒有 LargeObject
類別的無參數建構函式。
此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 在這三個線程所使用的 ThreadProc
方法中,呼叫 Value 屬性會建立 LargeObject
實例:
LargeObject large = null;
try
{
large = lazyLargeObject.Value;
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5);
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
catch (ApplicationException ex)
{
Console.WriteLine("ApplicationException: {0}", ex.Message);
}
try
let large = lazyLargeObject.Value
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep 5
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as ex ->
printfn $"ApplicationException: {ex.Message}"
Dim large As LargeObject = Nothing
Try
large = lazyLargeObject.Value
' The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5)
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine( _
"LargeObject was initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
Catch ex As ApplicationException
Console.WriteLine("ApplicationException: {0}", ex.Message)
End Try
在程序代碼的第三個主要區段中,會呼叫延遲初始化函式來建立 LargeObject
實例。 函式第一次呼叫時擲回例外狀況:
static int instanceCount = 0;
static LargeObject InitLargeObject()
{
if (1 == Interlocked.Increment(ref instanceCount))
{
throw new ApplicationException(
String.Format("Lazy initialization function failed on thread {0}.",
Thread.CurrentThread.ManagedThreadId));
}
return new LargeObject(Thread.CurrentThread.ManagedThreadId);
}
let mutable instanceCount = 0
let initLargeObject () =
if 1 = Interlocked.Increment &instanceCount then
raise (ApplicationException $"Lazy initialization function failed on thread {Thread.CurrentThread.ManagedThreadId}.")
LargeObject Thread.CurrentThread.ManagedThreadId
Private Shared instanceCount As Integer = 0
Private Shared Function InitLargeObject() As LargeObject
If 1 = Interlocked.Increment(instanceCount) Then
Throw New ApplicationException( _
"Lazy initialization function failed on thread " & _
Thread.CurrentThread.ManagedThreadId & ".")
End If
Return New LargeObject(Thread.CurrentThread.ManagedThreadId)
End Function
使用任何其他 LazyThreadSafetyMode 設定時,將會快取初始化函式中未處理的例外狀況。 不過,LazyThreadSafetyMode.PublicationOnly 會隱藏例外狀況快取。 範例的輸出示範後續嘗試初始化物件成功。
注意
例外狀況訊息通常會出現在指出其他線程已成功初始化 對象的訊息之後。 這是因為擲回和攔截例外狀況所產生的延遲。
由於指定 LazyThreadSafetyMode.PublicationOnly之 Lazy<T> 實例的建構函式,因此允許這三個線程建立 LargeObject
實例。 此範例會示範這個方法,方法是在建構函式和 LargeObject
類別的完成項中顯示主控台訊息:
public LargeObject(int initializedBy)
{
initBy = initializedBy;
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}
~LargeObject()
{
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
type LargeObject(initBy) =
do
printfn $"Constructor: Instance initializing on thread {initBy}"
override _.Finalize() =
printfn $"Finalizer: Instance was initialized on {initBy}"
Public Sub New(ByVal initializedBy As Integer)
initBy = initializedBy
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub
Protected Overrides Sub Finalize()
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub
Lazy<T> 對象可確保所有線程只能使用一個實例(除了初始化函式擲回例外狀況的線程除外)。 此範例的輸出會顯示這一點。
注意
為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static
(Visual Basic 中的Shared
)。 這些不是使用延遲初始化的需求。
using System;
using System.Threading;
class Program
{
static Lazy<LargeObject> lazyLargeObject = null;
// Factory function for lazy initialization.
static int instanceCount = 0;
static LargeObject InitLargeObject()
{
if (1 == Interlocked.Increment(ref instanceCount))
{
throw new ApplicationException(
String.Format("Lazy initialization function failed on thread {0}.",
Thread.CurrentThread.ManagedThreadId));
}
return new LargeObject(Thread.CurrentThread.ManagedThreadId);
}
static void Main()
{
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
lazyLargeObject = new Lazy<LargeObject>(InitLargeObject,
LazyThreadSafetyMode.PublicationOnly);
// Create and start 3 threads, passing the same blocking event to all of them.
ManualResetEvent startingGate = new ManualResetEvent(false);
Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
foreach (Thread t in threads)
{
t.Start(startingGate);
}
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(50);
startingGate.Set();
// Wait for all 3 threads to finish. (The order doesn't matter.)
foreach (Thread t in threads)
{
t.Join();
}
Console.WriteLine(
"\r\nThreads are complete. Running GC.Collect() to reclaim extra instances.");
GC.Collect();
// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep(100);
Console.WriteLine("\r\nNote that only one instance of LargeObject was used.");
Console.WriteLine("Press Enter to end the program");
Console.ReadLine();
}
static void ThreadProc(object state)
{
// Wait for the signal.
ManualResetEvent waitForStart = (ManualResetEvent) state;
waitForStart.WaitOne();
LargeObject large = null;
try
{
large = lazyLargeObject.Value;
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5);
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock(large)
{
large.Data[0] = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
large.InitializedBy, large.Data[0]);
}
}
catch (ApplicationException ex)
{
Console.WriteLine("ApplicationException: {0}", ex.Message);
}
}
}
class LargeObject
{
int initBy = -1;
public int InitializedBy { get { return initBy; } }
public LargeObject(int initializedBy)
{
initBy = initializedBy;
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}
~LargeObject()
{
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
public long[] Data = new long[100000000];
}
/* This example produces output similar to the following:
Constructor: Instance initializing on thread 5
Constructor: Instance initializing on thread 4
ApplicationException: Lazy initialization function failed on thread 3.
LargeObject was initialized by thread 5; last used by thread 5.
LargeObject was initialized by thread 5; last used by thread 4.
Threads are complete. Running GC.Collect() to reclaim extra instances.
Finalizer: Instance was initialized on 4
Note that only one instance of LargeObject was used.
Press Enter to end the program
Finalizer: Instance was initialized on 5
*/
open System
open System.Threading
type LargeObject(initBy) =
do
printfn $"Constructor: Instance initializing on thread {initBy}"
override _.Finalize() =
printfn $"Finalizer: Instance was initialized on {initBy}"
member _.InitializedBy = initBy
member val Data = Array.zeroCreate<int64> 100000000 with get
// Factory function for lazy initialization.
let mutable instanceCount = 0
let initLargeObject () =
if 1 = Interlocked.Increment &instanceCount then
raise (ApplicationException $"Lazy initialization function failed on thread {Thread.CurrentThread.ManagedThreadId}.")
LargeObject Thread.CurrentThread.ManagedThreadId
// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.PublicationOnly)
let threadProc (state: obj) =
// Wait for the signal.
let waitForStart = state :?> ManualResetEvent
waitForStart.WaitOne() |> ignore
try
let large = lazyLargeObject.Value
// The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep 5
// IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
// object after creation. You must lock the object before accessing it,
// unless the type is thread safe. (LargeObject is not thread safe.)
lock large (fun () ->
large.Data[0] <- Thread.CurrentThread.ManagedThreadId
printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as ex ->
printfn $"ApplicationException: {ex.Message}"
// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads =
[| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
t.Start startingGate
// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 50
startingGate.Set() |> ignore
// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
t.Join()
printfn "\nThreads are complete. Running GC.Collect() to reclaim extra instances."
GC.Collect()
// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep 100
printfn "\nNote that only one instance of LargeObject was used."
printfn "Press Enter to end the program"
stdin.ReadLine() |> ignore
// This example produces output similar to the following:
// Constructor: Instance initializing on thread 5
// Constructor: Instance initializing on thread 4
// ApplicationException: Lazy initialization function failed on thread 3.
// LargeObject was initialized by thread 5 last used by thread 5.
// LargeObject was initialized by thread 5 last used by thread 4.
//
// Threads are complete. Running GC.Collect() to reclaim extra instances.
// Finalizer: Instance was initialized on 4
//
// Note that only one instance of LargeObject was used.
// Press Enter to end the program
//
// Finalizer: Instance was initialized on 5
Imports System.Threading
Friend Class Program
Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing
' Factory function for lazy initialization.
Private Shared instanceCount As Integer = 0
Private Shared Function InitLargeObject() As LargeObject
If 1 = Interlocked.Increment(instanceCount) Then
Throw New ApplicationException( _
"Lazy initialization function failed on thread " & _
Thread.CurrentThread.ManagedThreadId & ".")
End If
Return New LargeObject(Thread.CurrentThread.ManagedThreadId)
End Function
Shared Sub Main()
' The lazy initializer is created here. LargeObject is not created until the
' ThreadProc method executes.
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, _
LazyThreadSafetyMode.PublicationOnly)
' Create and start 3 threads, passing the same blocking event to all of them.
Dim startingGate As New ManualResetEvent(False)
Dim threads() As Thread = { _
New Thread(AddressOf ThreadProc), _
New Thread(AddressOf ThreadProc), _
New Thread(AddressOf ThreadProc) _
}
For Each t As Thread In threads
t.Start(startingGate)
Next t
' Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep(50)
startingGate.Set()
' Wait for all 3 threads to finish. (The order doesn't matter.)
For Each t As Thread In threads
t.Join()
Next t
Console.WriteLine(vbCrLf & _
"Threads are complete. Running GC.Collect() to reclaim extra instances.")
GC.Collect()
' Allow time for garbage collection, which happens asynchronously.
Thread.Sleep(100)
Console.WriteLine(vbCrLf & "Note that only one instance of LargeObject was used.")
Console.WriteLine("Press Enter to end the program")
Console.ReadLine()
End Sub
Private Shared Sub ThreadProc(ByVal state As Object)
' Wait for the signal.
Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
waitForStart.WaitOne()
Dim large As LargeObject = Nothing
Try
large = lazyLargeObject.Value
' The following line introduces an artificial delay to exaggerate the race condition.
Thread.Sleep(5)
' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
' object after creation. You must lock the object before accessing it,
' unless the type is thread safe. (LargeObject is not thread safe.)
SyncLock large
large.Data(0) = Thread.CurrentThread.ManagedThreadId
Console.WriteLine( _
"LargeObject was initialized by thread {0}; last used by thread {1}.", _
large.InitializedBy, large.Data(0))
End SyncLock
Catch ex As ApplicationException
Console.WriteLine("ApplicationException: {0}", ex.Message)
End Try
End Sub
End Class
Friend Class LargeObject
Private initBy As Integer = -1
Public ReadOnly Property InitializedBy() As Integer
Get
Return initBy
End Get
End Property
Public Sub New(ByVal initializedBy As Integer)
initBy = initializedBy
Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub
Protected Overrides Sub Finalize()
Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub
Public Data(99999999) As Long
End Class
' This example produces output similar to the following:
'
'Constructor: Instance initializing on thread 4
'ApplicationException: Lazy initialization function failed on thread 3.
'Constructor: Instance initializing on thread 5
'LargeObject was initialized by thread 4; last used by thread 4.
'LargeObject was initialized by thread 4; last used by thread 5.
'
'Threads are complete. Running GC.Collect() to reclaim extra instances.
'Finalizer: Instance was initialized on 5
'
'Note that only one instance of LargeObject was used.
'Press Enter to end the program
'
'Finalizer: Instance was initialized on 4
'
備註
Lazy<T> 實例的線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。
除非 mode
LazyThreadSafetyMode.PublicationOnly,否則會快取 valueFactory
擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。