共用方式為


Lazy<T> 建構函式

定義

初始化 Lazy<T> 類別的新實例。

多載

Lazy<T>()

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標類型的無參數建構函式。

Lazy<T>(Boolean)

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標型別的無參數建構函式和指定的初始化模式。

Lazy<T>(Func<T>)

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式。

Lazy<T>(LazyThreadSafetyMode)

初始化 Lazy<T> 類別的新實例,這個實例會使用 T 的無參數建構函式和指定的線程安全模式。

Lazy<T>(T)

初始化 Lazy<T> 類別的新實例,這個實例使用預先初始化的指定值。

Lazy<T>(Func<T>, Boolean)

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式和初始化模式。

Lazy<T>(Func<T>, LazyThreadSafetyMode)

使用指定的初始化函式和線程安全模式,初始化 Lazy<T> 類別的新實例。

Lazy<T>()

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標類型的無參數建構函式。

public:
 Lazy();
public Lazy ();
Public Sub New ()

範例

下列範例示範使用此建構函式。 它也說明如何使用 Lazy<T>(Boolean) 建構函式(指定 isThreadSafetrue),以及 Lazy<T>(LazyThreadSafetyMode) 建構函式(指定 modeLazyThreadSafetyMode.ExecutionAndPublication)。 若要切換至不同的建構函式,只要變更批注的建構函式即可。

此範例會定義一個 LargeObject 類別,這個類別將由數個線程之一初始化。 此範例中的兩個主要程式碼行是建立初始化表達式和實際的初始化。 在 Main 方法的開頭,此範例會為 LargeObject建立安全線程延遲初始化表達式:

lazyLargeObject = new Lazy<LargeObject>();

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(true);
//lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication);
let lazyLargeObject = Lazy<LargeObject>()

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(true)
//     let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication)
lazyLargeObject = New Lazy(Of LargeObject)()

' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line: 
'lazyLargeObject = New Lazy(Of LargeObject)(True)
'lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.ExecutionAndPublication)

此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 這三個線程所使用的 ThreadProc 方法會呼叫 Value 屬性,以取得 LargeObject 實例:

LargeObject large = lazyLargeObject.Value;
let large = lazyLargeObject.Value
Dim large As LargeObject = lazyLargeObject.Value

Lazy<T> 類別提供鎖定,因此只允許一個線程建立 LargeObject 實例。 此範例示範其他線程都會取得相同的實例。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>();

        // The following lines show how to use other constructors to achieve exactly the
        // same result as the previous line:
        //lazyLargeObject = new Lazy<LargeObject>(true);
        //lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication);

        Console.WriteLine(
            "\r\nLargeObject is not created until you access the Value property of the lazy" +
            "\r\ninitializer. Press Enter to create LargeObject.");
        Console.ReadLine();

        // Create and start 3 threads, passing the same blocking event to all of them.
        ManualResetEvent startingGate = new ManualResetEvent(false);
        Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
        foreach (Thread t in threads)
        {
            t.Start(startingGate);
        }

        // Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(100);
        startingGate.Set();

        // Wait for all 3 threads to finish. (The order doesn't matter.)
        foreach (Thread t in threads)
        {
            t.Join();
        }

        Console.WriteLine("\r\nPress Enter to end the program");
        Console.ReadLine();
    }

    static void ThreadProc(object state)
    {
        // Wait for the signal.
        ManualResetEvent waitForStart = (ManualResetEvent) state;
        waitForStart.WaitOne();

        LargeObject large = lazyLargeObject.Value;

        // The following line introduces an artificial delay to exaggerate the race condition.
        Thread.Sleep(5);

        // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
        //            object after creation. You must lock the object before accessing it,
        //            unless the type is thread safe. (LargeObject is not thread safe.)
        lock(large)
        {
            large.Data[0] = Thread.CurrentThread.ManagedThreadId;
            Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
                large.InitializedBy, large.Data[0]);
        }
    }
}

class LargeObject
{
    int initBy = 0;
    public int InitializedBy { get { return initBy; } }

    public LargeObject()
    {
        initBy = Thread.CurrentThread.ManagedThreadId;
        Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
    }
    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.

LargeObject was created on thread id 4.
Initialized by thread 4; last used by thread 3.
Initialized by thread 4; last used by thread 4.
Initialized by thread 4; last used by thread 5.

Press Enter to end the program
 */
open System
open System.Threading

type LargeObject() =
    let initBy = Thread.CurrentThread.ManagedThreadId
    do
        printfn $"LargeObject was created on thread id {initBy}."

    member val Data = Array.zeroCreate<int64> 100000000 with get
    member _.InitializedBy = initBy

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>()

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(true)
//     let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.ExecutionAndPublication)

let threadProc (state: obj) =
    // Wait for the signal.
    let waitForStart = state :?> ManualResetEvent
    waitForStart.WaitOne() |> ignore

    let large = lazyLargeObject.Value

    // The following line introduces an artificial delay to exaggerate the race condition.
    Thread.Sleep 5

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock large (fun () -> 
        large.Data[0] <- Thread.CurrentThread.ManagedThreadId
        printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}." )

printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine() |> ignore

// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads = [| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
    t.Start startingGate

// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 100
startingGate.Set() |> ignore

// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
    t.Join()

printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore

// This example produces output similar to the following:
//     LargeObject is not created until you access the Value property of the lazy
//     initializer. Press Enter to create LargeObject.
//    
//     LargeObject was created on thread id 4.
//     Initialized by thread 4 last used by thread 3.
//     Initialized by thread 4 last used by thread 4.
//     Initialized by thread 4 last used by thread 5.
//    
//     Press Enter to end the program
Imports System.Threading

Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)()

        ' The following lines show how to use other constructors to achieve exactly the
        ' same result as the previous line: 
        'lazyLargeObject = New Lazy(Of LargeObject)(True)
        'lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.ExecutionAndPublication)


        Console.WriteLine( _
            vbCrLf & "LargeObject is not created until you access the Value property of the lazy" _
            & vbCrLf & "initializer. Press Enter to create LargeObject.")
        Console.ReadLine()

        ' Create and start 3 threads, passing the same blocking event to all of them.
        Dim startingGate As New ManualResetEvent(False)
        Dim threads() As Thread = { New Thread(AddressOf ThreadProc), 
            New Thread(AddressOf ThreadProc), New Thread(AddressOf ThreadProc) }
        For Each t As Thread In threads
            t.Start(startingGate)
        Next t

        ' Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(100)
        startingGate.Set()

        ' Wait for all 3 threads to finish. (The order doesn't matter.)
        For Each t As Thread In threads
            t.Join()
        Next t

        Console.WriteLine(vbCrLf & "Press Enter to end the program")
        Console.ReadLine()
    End Sub


    Private Shared Sub ThreadProc(ByVal state As Object)
        ' Wait for the signal.
        Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
        waitForStart.WaitOne()

        Dim large As LargeObject = lazyLargeObject.Value

        ' The following line introduces an artificial delay to exaggerate the race condition.
        Thread.Sleep(5)

        ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
        '            object after creation. You must lock the object before accessing it,
        '            unless the type is thread safe. (LargeObject is not thread safe.)
        SyncLock large
            large.Data(0) = Thread.CurrentThread.ManagedThreadId
            Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
                large.InitializedBy, large.Data(0))
        End SyncLock
    End Sub
End Class

Class LargeObject
    Private initBy As Integer = 0
    Public ReadOnly Property InitializedBy() As Integer
        Get
            Return initBy
        End Get
    End Property

    Public Sub New()
        initBy = Thread.CurrentThread.ManagedThreadId
        Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
    End Sub
    Public Data(100000000) As Long
End Class

' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'LargeObject was created on thread id 3.
'Initialized by thread 3; last used by thread 5.
'Initialized by thread 3; last used by thread 4.
'Initialized by thread 3; last used by thread 3.
'
'Press Enter to end the program

備註

使用這個建構函式建立的實例,可以同時從多個線程使用。

使用這個建構函式初始化之 Lazy<T> 實體的線程安全模式 LazyThreadSafetyMode.ExecutionAndPublication。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。

使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於

Lazy<T>(Boolean)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用目標型別的無參數建構函式和指定的初始化模式。

public:
 Lazy(bool isThreadSafe);
public Lazy (bool isThreadSafe);
new Lazy<'T> : bool -> Lazy<'T>
Public Sub New (isThreadSafe As Boolean)

參數

isThreadSafe
Boolean

true 讓多個線程同時使用此實例;false 讓實例一次只能使用一個線程。

範例

下列範例示範如何使用這個建構函式來建立非線程安全的延遲初始化表達式,以在相同線程上發生對延遲初始化物件的所有存取。 它也示範如何使用 Lazy<T>(LazyThreadSafetyMode) 建構函式(指定 modeLazyThreadSafetyMode.None。 若要切換至不同的建構函式,只要變更已批注的建構函式即可。

注意

如需示範如何在多線程案例中使用這個建構函式的程式代碼(指定 isThreadSafetrue),請參閱 Lazy<T>() 建構函式的範例。

此範例會定義將延遲初始化的 LargeObject 類別。 在 Main 方法中,此範例會建立 Lazy<T> 實例,然後暫停。 當您按下 Enter 鍵時,此範例會存取 Lazy<T> 實例的 Value 屬性,這會導致初始化。 LargeObject 類別的建構函式會顯示主控台訊息。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>(false);

        // The following lines show how to use other constructors to achieve exactly the
        // same result as the previous line:
        //lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.None);

        Console.WriteLine(
            "\r\nLargeObject is not created until you access the Value property of the lazy" +
            "\r\ninitializer. Press Enter to create LargeObject.");
        Console.ReadLine();

        LargeObject large = lazyLargeObject.Value;

        large.Data[11] = 89;

        Console.WriteLine("\r\nPress Enter to end the program");
        Console.ReadLine();
    }
}

class LargeObject
{
    public LargeObject()
    {
        Console.WriteLine("LargeObject was created on thread id {0}.",
            Thread.CurrentThread.ManagedThreadId);
    }
    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.

LargeObject was created on thread id 1.

Press Enter to end the program
 */
open System
open System.Threading

type LargeObject () =
    do
        printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."

    member val Data = Array.zeroCreate<int64> 100000000 with get

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> false
// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(LazyThreadSafetyMode.None)

printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine() |> ignore

let large = lazyLargeObject.Value

large.Data[11] <- 89

printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore


// This example produces output similar to the following:
//     LargeObject is not created until you access the Value property of the lazy
//     initializer. Press Enter to create LargeObject.
//     
//     LargeObject was created on thread id 1.
//     
//     Press Enter to end the program
Imports System.Threading

Friend Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)(False)

        ' The following lines show how to use other constructors to achieve exactly the
        ' same result as the previous line: 
        'lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.None);


        Console.WriteLine( _
            vbCrLf & "LargeObject is not created until you access the Value property of the lazy" _
            & vbCrLf & "initializer. Press Enter to create LargeObject.")
        Console.ReadLine()

        Dim large As LargeObject = lazyLargeObject.Value

        large.Data(11) = 89

        Console.WriteLine(vbCrLf & "Press Enter to end the program")
        Console.ReadLine()
    End Sub
End Class

Friend Class LargeObject
    Public Sub New()
        Console.WriteLine("LargeObject was created on thread id {0}.", _
            Thread.CurrentThread.ManagedThreadId)
    End Sub
    Public Data(100000000) As Long
End Class

' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'LargeObject was created on thread id 1.
'
'Press Enter to end the program

備註

如果 isThreadSafetrue,就會 LazyThreadSafetyMode.ExecutionAndPublication 使用此建構函式初始化之 Lazy<T> 實例的線程安全模式;否則,模式會 LazyThreadSafetyMode.None。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。 若要指定 LazyThreadSafetyMode.PublicationOnly 模式,請使用 Lazy<T>(Func<T>, LazyThreadSafetyMode)Lazy<T>(LazyThreadSafetyMode) 建構函式。

使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於

Lazy<T>(Func<T>)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式。

public:
 Lazy(Func<T> ^ valueFactory);
public Lazy (Func<T> valueFactory);
new Lazy<'T> : Func<'T> -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T))

參數

valueFactory
Func<T>

在需要時叫用以產生延遲初始化值的委派。

例外狀況

valueFactory null

範例

下列範例示範使用此建構函式來提供延遲初始化與例外狀況快取。 它也示範如何使用 Lazy<T>(Func<T>, Boolean) 建構函式(指定 isThreadSafetrue),以及 Lazy<T>(Func<T>, LazyThreadSafetyMode) 建構函式(指定 modeLazyThreadSafetyMode.ExecutionAndPublication)。 若要切換至不同的建構函式,只要變更批注的建構函式即可。

此範例會定義一個 LargeObject 類別,這個類別將由數個線程之一初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject 類別的建構函式,示範例外狀況快取。 在 Main 方法的開頭,此範例會為 LargeObject建立安全線程延遲初始化表達式:

lazyLargeObject = new Lazy<LargeObject>(InitLargeObject);

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, true);
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication);
let lazyLargeObject = Lazy<LargeObject> initLargeObject

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, true)
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject)

' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line: 
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, True)
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)

此範例會建立並啟動三個線程。 這三個線程所使用的 ThreadProc 方法會呼叫 Value 屬性,以取得 LargeObject 實例:

try
{
    LargeObject large = lazyLargeObject.Value;

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock(large)
    {
        large.Data[0] = Thread.CurrentThread.ManagedThreadId;
        Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
            large.InitializedBy, large.Data[0]);
    }
}
catch (ApplicationException aex)
{
    Console.WriteLine("Exception: {0}", aex.Message);
}
try
    let large = lazyLargeObject.Value

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock large (fun () -> 
        large.Data[0] <- Thread.CurrentThread.ManagedThreadId
        printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as aex ->
    printfn $"Exception: {aex.Message}"
Try
    Dim large As LargeObject = lazyLargeObject.Value

    ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
    '            object after creation. You must lock the object before accessing it,
    '            unless the type is thread safe. (LargeObject is not thread safe.)
    SyncLock large
        large.Data(0) = Thread.CurrentThread.ManagedThreadId
        Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
            large.InitializedBy, large.Data(0))
    End SyncLock
Catch aex As ApplicationException
    Console.WriteLine("Exception: {0}", aex.Message)
End Try

LargeObject 類別的建構函式中,程序代碼的第三個索引鍵區段會在第一次建立 LargeObject 實例時擲回例外狀況,但之後允許實例建立:

static int instanceCount = 0;
public LargeObject()
{
    if (1 == Interlocked.Increment(ref instanceCount))
    {
        throw new ApplicationException("Throw only ONCE.");
    }

    initBy = Thread.CurrentThread.ManagedThreadId;
    Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
}
type LargeObject() =
    static let mutable instanceCount = 0
    let initBy = Thread.CurrentThread.ManagedThreadId
    do
        if 1 = Interlocked.Increment &instanceCount then
            raise (ApplicationException "Throw only ONCE.")
        printfn $"LargeObject was created on thread id {initBy}."
Private Shared instanceCount As Integer = 0
Public Sub New()
    If 1 = Interlocked.Increment(instanceCount) Then
        Throw New ApplicationException("Throw only ONCE.")
    End If

    initBy = Thread.CurrentThread.ManagedThreadId
    Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
End Sub

執行此範例時,嘗試建立 LargeObject 實例的第一個線程會失敗,並攔截例外狀況。 您可能會預期下一個線程會成功建立實例,但 Lazy<T> 物件已快取例外狀況。 因此,這三個線程都會擲回例外狀況。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    static LargeObject InitLargeObject()
    {
        return new LargeObject();
    }

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>(InitLargeObject);

        // The following lines show how to use other constructors to achieve exactly the
        // same result as the previous line:
        //lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, true);
        //lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication);

        Console.WriteLine(
            "\r\nLargeObject is not created until you access the Value property of the lazy" +
            "\r\ninitializer. Press Enter to create LargeObject.");
        Console.ReadLine();

        // Create and start 3 threads, each of which tries to use LargeObject.
        Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
        foreach (Thread t in threads)
        {
            t.Start();
        }

        // Wait for all 3 threads to finish. (The order doesn't matter.)
        foreach (Thread t in threads)
        {
            t.Join();
        }

        Console.WriteLine("\r\nPress Enter to end the program");
        Console.ReadLine();
    }

    static void ThreadProc(object state)
    {
        try
        {
            LargeObject large = lazyLargeObject.Value;

            // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
            //            object after creation. You must lock the object before accessing it,
            //            unless the type is thread safe. (LargeObject is not thread safe.)
            lock(large)
            {
                large.Data[0] = Thread.CurrentThread.ManagedThreadId;
                Console.WriteLine("Initialized by thread {0}; last used by thread {1}.",
                    large.InitializedBy, large.Data[0]);
            }
        }
        catch (ApplicationException aex)
        {
            Console.WriteLine("Exception: {0}", aex.Message);
        }
    }
}

class LargeObject
{
    int initBy = 0;
    public int InitializedBy { get { return initBy; } }

    static int instanceCount = 0;
    public LargeObject()
    {
        if (1 == Interlocked.Increment(ref instanceCount))
        {
            throw new ApplicationException("Throw only ONCE.");
        }

        initBy = Thread.CurrentThread.ManagedThreadId;
        Console.WriteLine("LargeObject was created on thread id {0}.", initBy);
    }
    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject.

Exception: Throw only ONCE.
Exception: Throw only ONCE.
Exception: Throw only ONCE.

Press Enter to end the program
 */
open System
open System.Threading

type LargeObject() =
    static let mutable instanceCount = 0
    let initBy = Thread.CurrentThread.ManagedThreadId
    do
        if 1 = Interlocked.Increment &instanceCount then
            raise (ApplicationException "Throw only ONCE.")
        printfn $"LargeObject was created on thread id {initBy}."
    member _.InitializedBy = initBy
    member val Data = Array.zeroCreate<int64> 100000000

let initLargeObject () =
    LargeObject()

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> initLargeObject

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, true)
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)

let threadProc _ =
    try
        let large = lazyLargeObject.Value

        // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
        //            object after creation. You must lock the object before accessing it,
        //            unless the type is thread safe. (LargeObject is not thread safe.)
        lock large (fun () -> 
            large.Data[0] <- Thread.CurrentThread.ManagedThreadId
            printfn $"Initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
    with :? ApplicationException as aex ->
        printfn $"Exception: {aex.Message}"

printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject."""
stdin.ReadLine () |> ignore

// Create and start 3 threads, each of which tries to use LargeObject.
let threads = 
    [| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
    t.Start()

// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
    t.Join()

printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore

// This example produces output similar to the following:
//     LargeObject is not created until you access the Value property of the lazy
//     initializer. Press Enter to create LargeObject.
//     
//     Exception: Throw only ONCE.
//     Exception: Throw only ONCE.
//     Exception: Throw only ONCE.
//     
//     Press Enter to end the program
Imports System.Threading

Friend Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    Private Shared Function InitLargeObject() As LargeObject
        Return New LargeObject()
    End Function


    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject)

        ' The following lines show how to use other constructors to achieve exactly the
        ' same result as the previous line: 
        'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, True)
        'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.ExecutionAndPublication)


        Console.WriteLine(vbCrLf _
            & "LargeObject is not created until you access the Value property of the lazy" _
            & vbCrLf & "initializer. Press Enter to create LargeObject.")
        Console.ReadLine()

        ' Create and start 3 threads, each of which tries to use LargeObject.
        Dim threads() As Thread = { New Thread(AddressOf ThreadProc), _
            New Thread(AddressOf ThreadProc), New Thread(AddressOf ThreadProc) }
        For Each t As Thread In threads
            t.Start()
        Next t

        ' Wait for all 3 threads to finish. (The order doesn't matter.)
        For Each t As Thread In threads
            t.Join()
        Next t

        Console.WriteLine(vbCrLf & "Press Enter to end the program")
        Console.ReadLine()
    End Sub


    Private Shared Sub ThreadProc(ByVal state As Object)
        Try
            Dim large As LargeObject = lazyLargeObject.Value

            ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
            '            object after creation. You must lock the object before accessing it,
            '            unless the type is thread safe. (LargeObject is not thread safe.)
            SyncLock large
                large.Data(0) = Thread.CurrentThread.ManagedThreadId
                Console.WriteLine("Initialized by thread {0}; last used by thread {1}.", _
                    large.InitializedBy, large.Data(0))
            End SyncLock
        Catch aex As ApplicationException
            Console.WriteLine("Exception: {0}", aex.Message)
        End Try
    End Sub
End Class

Friend Class LargeObject
    Private initBy As Integer = 0
    Public ReadOnly Property InitializedBy() As Integer
        Get
            Return initBy
        End Get
    End Property

    Private Shared instanceCount As Integer = 0
    Public Sub New()
        If 1 = Interlocked.Increment(instanceCount) Then
            Throw New ApplicationException("Throw only ONCE.")
        End If

        initBy = Thread.CurrentThread.ManagedThreadId
        Console.WriteLine("LargeObject was created on thread id {0}.", initBy)
    End Sub
    Public Data(99999999) As Long
End Class

' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject.
'
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'
'Press Enter to end the program
'

備註

使用這個建構函式建立的實例,可以同時從多個線程使用。

使用這個建構函式初始化之 Lazy<T> 實體的線程安全模式 LazyThreadSafetyMode.ExecutionAndPublication。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。

快取 valueFactory 擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於

Lazy<T>(LazyThreadSafetyMode)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例,這個實例會使用 T 的無參數建構函式和指定的線程安全模式。

public:
 Lazy(System::Threading::LazyThreadSafetyMode mode);
public Lazy (System.Threading.LazyThreadSafetyMode mode);
new Lazy<'T> : System.Threading.LazyThreadSafetyMode -> Lazy<'T>
Public Sub New (mode As LazyThreadSafetyMode)

參數

mode
LazyThreadSafetyMode

其中一個列舉值,指定線程安全模式。

例外狀況

mode 包含無效的值。

範例

下列範例示範使用此建構函式來建立延遲初始化表達式,讓多個線程競爭以延遲建立物件。 多個線程可能會成功建立實例,但所有線程都使用第一次建立的實例。

注意

如需示範如何在單個線程案例中使用這個建構函式的範例(指定 modeLazyThreadSafetyMode.None),請參閱 Lazy<T>(Boolean) 建構函式。 如需示範如何使用這個建構函式在多線程案例中提供鎖定而非競爭條件的範例(指定 modeLazyThreadSafetyMode.ExecutionAndPublication),請參閱 Lazy<T>() 建構函式。

此範例會定義一個 LargeObject 類別,這個類別將由數個線程中的任何一個延遲初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject 類別的建構函式和完成項。 在 Main 方法的開頭,此範例會建立執行 LargeObject延遲初始化的 Lazy<T> 物件:

lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.PublicationOnly);
let lazyLargeObject = Lazy<LargeObject> LazyThreadSafetyMode.PublicationOnly
lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.PublicationOnly)

此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 在這三個線程所使用的 ThreadProc 方法中,呼叫 Value 屬性會建立 LargeObject 實例:

LargeObject large = lazyLargeObject.Value;
let large = lazyLargeObject.Value
Dim large As LargeObject = lazyLargeObject.Value

由於指定 LazyThreadSafetyMode.PublicationOnlyLazy<T> 實例的建構函式,因此允許這三個線程建立 LargeObject 實例。 此範例會示範這個方法,方法是在建構函式和 LargeObject 類別的完成項中顯示主控台訊息:

public LargeObject()
{
    initBy = Thread.CurrentThread.ManagedThreadId;
    Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}

~LargeObject()
{
    Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
type LargeObject() =
    let initBy = Thread.CurrentThread.ManagedThreadId
    do
        printfn $"Constructor: Instance initializing on thread {initBy}"

    override _.Finalize() =
        printfn $"Finalizer: Instance was initialized on {initBy}"
Public Sub New()
    initBy = Thread.CurrentThread.ManagedThreadId
    Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub

Protected Overrides Sub Finalize()
    Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub

不過,Lazy<T> 對象可確保所有線程只使用一個實例。 此範例的輸出顯示這三個線程都使用相同的實例,同時也顯示其他兩個實例可由垃圾收集回收。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>(LazyThreadSafetyMode.PublicationOnly);

        // Create and start 3 threads, passing the same blocking event to all of them.
        ManualResetEvent startingGate = new ManualResetEvent(false);
        Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
        foreach (Thread t in threads)
        {
            t.Start(startingGate);
        }

        // Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(50);
        startingGate.Set();

        // Wait for all 3 threads to finish. (The order doesn't matter.)
        foreach (Thread t in threads)
        {
            t.Join();
        }

        Console.WriteLine(
            "\r\nThreads are complete. Running GC.Collect() to reclaim the extra instances.");

        GC.Collect();

        // Allow time for garbage collection, which happens asynchronously.
        Thread.Sleep(100);

        Console.WriteLine(
            "\r\nNote that all three threads used the instance that was not collected.");
        Console.WriteLine("Press Enter to end the program");
        Console.ReadLine();
    }

    static void ThreadProc(object state)
    {
        // Wait for the signal.
        ManualResetEvent waitForStart = (ManualResetEvent) state;
        waitForStart.WaitOne();

        LargeObject large = lazyLargeObject.Value;

        // The following line introduces an artificial delay, to exaggerate the race
        // condition.
        Thread.Sleep(5);

        // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
        //            object after creation. You must lock the object before accessing it,
        //            unless the type is thread safe. (LargeObject is not thread safe.)
        lock(large)
        {
            large.Data[0] = Thread.CurrentThread.ManagedThreadId;
            Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
                large.InitializedBy, large.Data[0]);
        }
    }
}

class LargeObject
{
    int initBy = -1;
    public int InitializedBy { get { return initBy; } }

    public LargeObject()
    {
        initBy = Thread.CurrentThread.ManagedThreadId;
        Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
    }

    ~LargeObject()
    {
        Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
    }

    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

Constructor: Instance initializing on thread 4
Constructor: Instance initializing on thread 3
Constructor: Instance initializing on thread 5
LargeObject was initialized by thread 4; last used by thread 4.
LargeObject was initialized by thread 4; last used by thread 5.
LargeObject was initialized by thread 4; last used by thread 3.

Threads are complete. Running GC.Collect() to reclaim the extra instances.
Finalizer: Instance was initialized on 3
Finalizer: Instance was initialized on 5

Note that all three threads used the instance that was not collected.
Press Enter to end the program

Instance finalizing; initialized on 4
 */
open System
open System.Threading

type LargeObject() =
    let initBy = Thread.CurrentThread.ManagedThreadId
    do
        printfn $"Constructor: Instance initializing on thread {initBy}"

    override _.Finalize() =
        printfn $"Finalizer: Instance was initialized on {initBy}"

    member _.InitializedBy = initBy
    member val Data = Array.zeroCreate<int64> 100000000

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject> LazyThreadSafetyMode.PublicationOnly

let threadProc (state: obj) =
    // Wait for the signal.
    let waitForStart = state :?> ManualResetEvent
    waitForStart.WaitOne() |> ignore

    let large = lazyLargeObject.Value

    // The following line introduces an artificial delay, to exaggerate the race
    // condition.
    Thread.Sleep 5

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock large (fun () -> 
        large.Data[0] <- Thread.CurrentThread.ManagedThreadId
        printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")

// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads = 
    [| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
    t.Start startingGate

// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 50
startingGate.Set() |> ignore

// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
    t.Join()

printfn "\nThreads are complete. Running GC.Collect() to reclaim the extra instances."

GC.Collect()

// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep 100

printfn "\nNote that all three threads used the instance that was not collected."
printfn "Press Enter to end the program"
stdin.ReadLine() |> ignore


// This example produces output similar to the following:
//     Constructor: Instance initializing on thread 4
//     Constructor: Instance initializing on thread 3
//     Constructor: Instance initializing on thread 5
//     LargeObject was initialized by thread 4 last used by thread 4.
//     LargeObject was initialized by thread 4 last used by thread 5.
//     LargeObject was initialized by thread 4 last used by thread 3.
//     
//     Threads are complete. Running GC.Collect() to reclaim the extra instances.
//     Finalizer: Instance was initialized on 3
//     Finalizer: Instance was initialized on 5
//     
//     Note that all three threads used the instance that was not collected.
//     Press Enter to end the program
//     
//     Instance finalizing initialized on 4
Imports System.Threading

Friend Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)(LazyThreadSafetyMode.PublicationOnly)


        ' Create and start 3 threads, passing the same blocking event to all of them.
        Dim startingGate As New ManualResetEvent(False)
        Dim threads() As Thread = { _
            New Thread(AddressOf ThreadProc), _
            New Thread(AddressOf ThreadProc), _
            New Thread(AddressOf ThreadProc) _
        }
        For Each t As Thread In threads
            t.Start(startingGate)
        Next t

        ' Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(50)
        startingGate.Set()

        ' Wait for all 3 threads to finish. (The order doesn't matter.)
        For Each t As Thread In threads
            t.Join()
        Next t

        Console.WriteLine(vbCrLf & _
            "Threads are complete. Running GC.Collect() to reclaim the extra instances.")

        GC.Collect()

        ' Allow time for garbage collection, which happens asynchronously.
        Thread.Sleep(100)

        Console.WriteLine(vbCrLf & _
            "Note that all three threads used the instance that was not collected.")
        Console.WriteLine("Press Enter to end the program")
        Console.ReadLine()

    End Sub


    Private Shared Sub ThreadProc(ByVal state As Object)
        ' Wait for the signal.
        Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
        waitForStart.WaitOne()

        Dim large As LargeObject = lazyLargeObject.Value

        ' The following line introduces an artificial delay to exaggerate the race condition.
        Thread.Sleep(5)

        ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
        '            object after creation. You must lock the object before accessing it,
        '            unless the type is thread safe. (LargeObject is not thread safe.)
        SyncLock large
            large.Data(0) = Thread.CurrentThread.ManagedThreadId
            Console.WriteLine( _
                "LargeObject was initialized by thread {0}; last used by thread {1}.", _
                large.InitializedBy, large.Data(0))
        End SyncLock
    End Sub
End Class

Friend Class LargeObject
    Private initBy As Integer = -1
    Public ReadOnly Property InitializedBy() As Integer
        Get
            Return initBy
        End Get
    End Property

    Public Sub New()
        initBy = Thread.CurrentThread.ManagedThreadId
        Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
    End Sub

    Protected Overrides Sub Finalize()
        Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
    End Sub

    Public Data(100000000) As Long
End Class

' This example produces output similar to the following:
'
'Constructor: Instance initializing on thread 3
'Constructor: Instance initializing on thread 5
'Constructor: Instance initializing on thread 4
'LargeObject was initialized by thread 3; last used by thread 4.
'LargeObject was initialized by thread 3; last used by thread 3.
'LargeObject was initialized by thread 3; last used by thread 5.
'
'Threads are complete. Running GC.Collect() to reclaim the extra instances.
'Finalizer: Instance was initialized on 5
'Finalizer: Instance was initialized on 4
'
'Note that all three threads used the instance that was not collected.
'Press Enter to end the program
'
'Finalizer: Instance was initialized on 3
'

備註

Lazy<T> 實例的線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。

使用此建構函式建立的 Lazy<T> 實例不會快取例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於

Lazy<T>(T)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例,這個實例使用預先初始化的指定值。

public:
 Lazy(T value);
public Lazy (T value);
new Lazy<'T> : 'T -> Lazy<'T>
Public Sub New (value As T)

參數

value
T

要使用的預先初始化值。

備註

使用這個建構函式建立的實例可供多個線程同時使用。

適用於

Lazy<T>(Func<T>, Boolean)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

初始化 Lazy<T> 類別的新實例。 發生延遲初始化時,會使用指定的初始化函式和初始化模式。

public:
 Lazy(Func<T> ^ valueFactory, bool isThreadSafe);
public Lazy (Func<T> valueFactory, bool isThreadSafe);
new Lazy<'T> : Func<'T> * bool -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T), isThreadSafe As Boolean)

參數

valueFactory
Func<T>

在需要時叫用以產生延遲初始化值的委派。

isThreadSafe
Boolean

true 讓多個線程同時使用此實例;false 讓這個實例一次只能使用一個線程。

例外狀況

valueFactory null

範例

下列範例示範如何使用這個建構函式,在具有單個線程的案例中,提供延遲初始化例外狀況快取。 它也示範如何使用 Lazy<T> 建構函式(指定 modeLazyThreadSafetyMode.None)。 若要切換至該建構函式,只要變更已批注的建構函式即可。

注意

如需示範如何在多線程案例中使用這個建構函式的程式代碼(指定 isThreadSafetrue),請參閱 Lazy<T>(Func<T>) 建構函式的範例。

此範例會定義一個 LargeObject 類別,這個類別將由數個線程之一初始化。 程序代碼的三個主要區段說明如何建立初始化表達式、實際初始化,以及 LargeObject 類別的建構函式,示範例外狀況快取。 在 Main 方法的開頭,此範例會為 LargeObject建立安全線程延遲初始化表達式:

lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, false);

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.None);
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, false)

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.None)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, False)

' The following lines show how to use other constructors to achieve exactly the
' same result as the previous line: 
'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.None)

在對建構函式的呼叫中,isThreadSafe 參數是 false,因此 Lazy<T> 不是安全線程。 因為不是安全線程,所以此範例會在相同的線程上呼叫 Value 屬性三次:

for (int i = 0; i < 3; i++)
{
    try
    {
        LargeObject large = lazyLargeObject.Value;
        large.Data[11] = 89;
    }
    catch (ApplicationException aex)
    {
        Console.WriteLine("Exception: {0}", aex.Message);
    }
}
for _ = 0 to 2 do
    try
        let large = lazyLargeObject.Value
        large.Data[11] <- 89
    with :? ApplicationException as aex ->
        printfn $"Exception: {aex.Message}"
For i As Integer = 0 To 2
    Try
        Dim large As LargeObject = lazyLargeObject.Value
        large.Data(11) = 89
    Catch aex As ApplicationException
        Console.WriteLine("Exception: {0}", aex.Message)
    End Try
Next i

LargeObject 類別的建構函式中,程序代碼的第三個索引鍵區段會在第一次建立 LargeObject 實例時擲回例外狀況,但之後允許實例建立:

static bool pleaseThrow = true;
public LargeObject()
{
    if (pleaseThrow)
    {
        pleaseThrow = false;
        throw new ApplicationException("Throw only ONCE.");
    }

    Console.WriteLine("LargeObject was created on thread id {0}.",
        Thread.CurrentThread.ManagedThreadId);
}
type LargeObject() =
    static let mutable pleaseThrow = true
    do
        if pleaseThrow then
            pleaseThrow <- false
            raise (ApplicationException "Throw only ONCE.")
        printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."
Private Shared pleaseThrow As Boolean = True
Public Sub New()
    If pleaseThrow Then
        pleaseThrow = False
        Throw New ApplicationException("Throw only ONCE.")
    End If

    Console.WriteLine("LargeObject was created on thread id {0}.", _
        Thread.CurrentThread.ManagedThreadId)
End Sub

執行範例時,第一次嘗試建立 LargeObject 實例失敗,並攔截例外狀況。 您可能會預期下一次嘗試會成功,但 Lazy<T> 物件已快取例外狀況。 因此,這三次嘗試都會擲回例外狀況。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    static LargeObject InitLargeObject()
    {
        return new LargeObject();
    }

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, false);

        // The following lines show how to use other constructors to achieve exactly the
        // same result as the previous line:
        //lazyLargeObject = new Lazy<LargeObject>(InitLargeObject, LazyThreadSafetyMode.None);

        Console.WriteLine(
            "\r\nLargeObject is not created until you access the Value property of the lazy" +
            "\r\ninitializer. Press Enter to create LargeObject (three tries).");
        Console.ReadLine();

        for (int i = 0; i < 3; i++)
        {
            try
            {
                LargeObject large = lazyLargeObject.Value;
                large.Data[11] = 89;
            }
            catch (ApplicationException aex)
            {
                Console.WriteLine("Exception: {0}", aex.Message);
            }
        }

        Console.WriteLine("\r\nPress Enter to end the program");
        Console.ReadLine();
    }
}

class LargeObject
{
    static bool pleaseThrow = true;
    public LargeObject()
    {
        if (pleaseThrow)
        {
            pleaseThrow = false;
            throw new ApplicationException("Throw only ONCE.");
        }

        Console.WriteLine("LargeObject was created on thread id {0}.",
            Thread.CurrentThread.ManagedThreadId);
    }
    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject (three tries).

Exception: Throw only ONCE.
Exception: Throw only ONCE.
Exception: Throw only ONCE.

Press Enter to end the program
 */
open System
open System.Threading

type LargeObject() =
    static let mutable pleaseThrow = true
    do
        if pleaseThrow then
            pleaseThrow <- false
            raise (ApplicationException "Throw only ONCE.")
        printfn $"LargeObject was created on thread id {Thread.CurrentThread.ManagedThreadId}."
    member val Data = Array.zeroCreate<int64> 100000000

let initLargeObject () =
    LargeObject()

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, false)

// The following lines show how to use other constructors to achieve exactly the
// same result as the previous line:
//     let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.None)

printfn """
LargeObject is not created until you access the Value property of the lazy
initializer. Press Enter to create LargeObject (three tries)."""
stdin.ReadLine() |> ignore

for _ = 0 to 2 do
    try
        let large = lazyLargeObject.Value
        large.Data[11] <- 89
    with :? ApplicationException as aex ->
        printfn $"Exception: {aex.Message}"

printfn "\nPress Enter to end the program"
stdin.ReadLine() |> ignore

// This example produces output similar to the following:
//     LargeObject is not created until you access the Value property of the lazy
//     initializer. Press Enter to create LargeObject (three tries).
//     
//     Exception: Throw only ONCE.
//     Exception: Throw only ONCE.
//     Exception: Throw only ONCE.
//     
//     Press Enter to end the program
Imports System.Threading

Friend Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    Private Shared Function InitLargeObject() As LargeObject
        Return New LargeObject()
    End Function


    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, False)

        ' The following lines show how to use other constructors to achieve exactly the
        ' same result as the previous line: 
        'lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, LazyThreadSafetyMode.None)


        Console.WriteLine(vbCrLf _
            & "LargeObject is not created until you access the Value property of the lazy" _
            & vbCrLf & "initializer. Press Enter to create LargeObject (three tries).")
        Console.ReadLine()

        For i As Integer = 0 To 2
            Try
                Dim large As LargeObject = lazyLargeObject.Value
                large.Data(11) = 89
            Catch aex As ApplicationException
                Console.WriteLine("Exception: {0}", aex.Message)
            End Try
        Next i

        Console.WriteLine(vbCrLf & "Press Enter to end the program")
        Console.ReadLine()
    End Sub
End Class

Friend Class LargeObject
    Private Shared pleaseThrow As Boolean = True
    Public Sub New()
        If pleaseThrow Then
            pleaseThrow = False
            Throw New ApplicationException("Throw only ONCE.")
        End If

        Console.WriteLine("LargeObject was created on thread id {0}.", _
            Thread.CurrentThread.ManagedThreadId)
    End Sub
    Public Data(100000000) As Long
End Class

' This example produces output similar to the following:
'
'LargeObject is not created until you access the Value property of the lazy
'initializer. Press Enter to create LargeObject (three tries).
'
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'Exception: Throw only ONCE.
'
'Press Enter to end the program
'

備註

如果 isThreadSafetrue,就會 LazyThreadSafetyMode.ExecutionAndPublication 使用此建構函式初始化之 Lazy<T> 實例的線程安全模式;否則,模式會 LazyThreadSafetyMode.None。 線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。

若要指定 LazyThreadSafetyMode.PublicationOnly 模式,請使用 Lazy<T>(Func<T>, LazyThreadSafetyMode)Lazy<T>(LazyThreadSafetyMode) 建構函式。

快取 valueFactory 擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於

Lazy<T>(Func<T>, LazyThreadSafetyMode)

來源:
Lazy.cs
來源:
Lazy.cs
來源:
Lazy.cs

使用指定的初始化函式和線程安全模式,初始化 Lazy<T> 類別的新實例。

public:
 Lazy(Func<T> ^ valueFactory, System::Threading::LazyThreadSafetyMode mode);
public Lazy (Func<T> valueFactory, System.Threading.LazyThreadSafetyMode mode);
new Lazy<'T> : Func<'T> * System.Threading.LazyThreadSafetyMode -> Lazy<'T>
Public Sub New (valueFactory As Func(Of T), mode As LazyThreadSafetyMode)

參數

valueFactory
Func<T>

在需要時叫用以產生延遲初始化值的委派。

mode
LazyThreadSafetyMode

其中一個列舉值,指定線程安全模式。

例外狀況

mode 包含無效的值。

valueFactory null

範例

下列範例示範使用此建構函式來建立延遲初始化表達式,讓多個線程競爭以延遲建立物件。 多個線程可能會成功建立實例,但所有線程都使用第一次建立的實例。 此外,此範例示範當您指定 LazyThreadSafetyMode.PublicationOnly時,永遠不會快取例外狀況,即使初始化是由函式執行,而不是由延遲建立類型的無參數建構函式執行。

注意

如需示範如何在單個線程案例中使用這個建構函式的範例(指定 modeLazyThreadSafetyMode.None),請參閱 Lazy<T>(Boolean) 建構函式。 如需示範如何使用這個建構函式在多線程案例中提供鎖定而非競爭條件的範例(指定 modeLazyThreadSafetyMode.ExecutionAndPublication),請參閱 Lazy<T>() 建構函式。

此範例會定義一個 LargeObject 類別,這個類別將由數個線程中的任何一個延遲初始化。 程序代碼的四個主要區段說明如何建立初始化運算式、實際初始化、初始化函式,以及 LargeObject 類別的建構函式和完成項。 在 Main 方法的開頭,此範例會建立執行 LargeObject延遲初始化的 Lazy<T> 物件:

lazyLargeObject = new Lazy<LargeObject>(InitLargeObject,
                             LazyThreadSafetyMode.PublicationOnly);
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.PublicationOnly)
lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, _
     LazyThreadSafetyMode.PublicationOnly)

延遲初始化表示式會使用 函式來執行初始化。 在此情況下,需要函式,因為沒有 LargeObject 類別的無參數建構函式。

此範例會建立並啟動在 ManualResetEvent 對象上封鎖的三個線程,讓此範例可以一次釋放線程。 在這三個線程所使用的 ThreadProc 方法中,呼叫 Value 屬性會建立 LargeObject 實例:

LargeObject large = null;
try
{
    large = lazyLargeObject.Value;

    // The following line introduces an artificial delay to exaggerate the race condition.
    Thread.Sleep(5);

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock(large)
    {
        large.Data[0] = Thread.CurrentThread.ManagedThreadId;
        Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
            large.InitializedBy, large.Data[0]);
    }
}
catch (ApplicationException ex)
{
    Console.WriteLine("ApplicationException: {0}", ex.Message);
}
try
    let large = lazyLargeObject.Value

    // The following line introduces an artificial delay to exaggerate the race condition.
    Thread.Sleep 5

    // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
    //            object after creation. You must lock the object before accessing it,
    //            unless the type is thread safe. (LargeObject is not thread safe.)
    lock large (fun () -> 
        large.Data[0] <- Thread.CurrentThread.ManagedThreadId
        printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
with :? ApplicationException as ex ->
    printfn $"ApplicationException: {ex.Message}"
Dim large As LargeObject = Nothing
Try
    large = lazyLargeObject.Value

    ' The following line introduces an artificial delay to exaggerate the race condition.
    Thread.Sleep(5)

    ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
    '            object after creation. You must lock the object before accessing it,
    '            unless the type is thread safe. (LargeObject is not thread safe.)
    SyncLock large
        large.Data(0) = Thread.CurrentThread.ManagedThreadId
        Console.WriteLine( _
            "LargeObject was initialized by thread {0}; last used by thread {1}.", _
            large.InitializedBy, large.Data(0))
    End SyncLock
Catch ex As ApplicationException
    Console.WriteLine("ApplicationException: {0}", ex.Message)
End Try

在程序代碼的第三個主要區段中,會呼叫延遲初始化函式來建立 LargeObject 實例。 函式第一次呼叫時擲回例外狀況:

static int instanceCount = 0;
static LargeObject InitLargeObject()
{
    if (1 == Interlocked.Increment(ref instanceCount))
    {
        throw new ApplicationException(
            String.Format("Lazy initialization function failed on thread {0}.",
            Thread.CurrentThread.ManagedThreadId));
    }
    return new LargeObject(Thread.CurrentThread.ManagedThreadId);
}
let mutable instanceCount = 0
let initLargeObject () =
    if 1 = Interlocked.Increment &instanceCount then
        raise (ApplicationException $"Lazy initialization function failed on thread {Thread.CurrentThread.ManagedThreadId}.")
    LargeObject Thread.CurrentThread.ManagedThreadId
Private Shared instanceCount As Integer = 0
Private Shared Function InitLargeObject() As LargeObject
    If 1 = Interlocked.Increment(instanceCount) Then
        Throw New ApplicationException( _
            "Lazy initialization function failed on thread " & _
            Thread.CurrentThread.ManagedThreadId & ".")
    End If
    Return New LargeObject(Thread.CurrentThread.ManagedThreadId)
End Function

使用任何其他 LazyThreadSafetyMode 設定時,將會快取初始化函式中未處理的例外狀況。 不過,LazyThreadSafetyMode.PublicationOnly 會隱藏例外狀況快取。 範例的輸出示範後續嘗試初始化物件成功。

注意

例外狀況訊息通常會出現在指出其他線程已成功初始化 對象的訊息之後。 這是因為擲回和攔截例外狀況所產生的延遲。

由於指定 LazyThreadSafetyMode.PublicationOnlyLazy<T> 實例的建構函式,因此允許這三個線程建立 LargeObject 實例。 此範例會示範這個方法,方法是在建構函式和 LargeObject 類別的完成項中顯示主控台訊息:

public LargeObject(int initializedBy)
{
    initBy = initializedBy;
    Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
}

~LargeObject()
{
    Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
}
type LargeObject(initBy) =
    do
        printfn $"Constructor: Instance initializing on thread {initBy}"

    override _.Finalize() =
        printfn $"Finalizer: Instance was initialized on {initBy}"
Public Sub New(ByVal initializedBy As Integer)
    initBy = initializedBy
    Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
End Sub

Protected Overrides Sub Finalize()
    Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
End Sub

Lazy<T> 對象可確保所有線程只能使用一個實例(除了初始化函式擲回例外狀況的線程除外)。 此範例的輸出會顯示這一點。

注意

為了簡單起見,此範例會使用全域實例 Lazy<T>,而且所有方法都會 static(Visual Basic 中的Shared)。 這些不是使用延遲初始化的需求。

using System;
using System.Threading;

class Program
{
    static Lazy<LargeObject> lazyLargeObject = null;

    // Factory function for lazy initialization.
    static int instanceCount = 0;
    static LargeObject InitLargeObject()
    {
        if (1 == Interlocked.Increment(ref instanceCount))
        {
            throw new ApplicationException(
                String.Format("Lazy initialization function failed on thread {0}.",
                Thread.CurrentThread.ManagedThreadId));
        }
        return new LargeObject(Thread.CurrentThread.ManagedThreadId);
    }

    static void Main()
    {
        // The lazy initializer is created here. LargeObject is not created until the
        // ThreadProc method executes.
        lazyLargeObject = new Lazy<LargeObject>(InitLargeObject,
                                     LazyThreadSafetyMode.PublicationOnly);

        // Create and start 3 threads, passing the same blocking event to all of them.
        ManualResetEvent startingGate = new ManualResetEvent(false);
        Thread[] threads = { new Thread(ThreadProc), new Thread(ThreadProc), new Thread(ThreadProc) };
        foreach (Thread t in threads)
        {
            t.Start(startingGate);
        }

        // Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(50);
        startingGate.Set();

        // Wait for all 3 threads to finish. (The order doesn't matter.)
        foreach (Thread t in threads)
        {
            t.Join();
        }

        Console.WriteLine(
            "\r\nThreads are complete. Running GC.Collect() to reclaim extra instances.");

        GC.Collect();

        // Allow time for garbage collection, which happens asynchronously.
        Thread.Sleep(100);

        Console.WriteLine("\r\nNote that only one instance of LargeObject was used.");
        Console.WriteLine("Press Enter to end the program");
        Console.ReadLine();
    }

    static void ThreadProc(object state)
    {
        // Wait for the signal.
        ManualResetEvent waitForStart = (ManualResetEvent) state;
        waitForStart.WaitOne();

        LargeObject large = null;
        try
        {
            large = lazyLargeObject.Value;

            // The following line introduces an artificial delay to exaggerate the race condition.
            Thread.Sleep(5);

            // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
            //            object after creation. You must lock the object before accessing it,
            //            unless the type is thread safe. (LargeObject is not thread safe.)
            lock(large)
            {
                large.Data[0] = Thread.CurrentThread.ManagedThreadId;
                Console.WriteLine("LargeObject was initialized by thread {0}; last used by thread {1}.",
                    large.InitializedBy, large.Data[0]);
            }
        }
        catch (ApplicationException ex)
        {
            Console.WriteLine("ApplicationException: {0}", ex.Message);
        }
    }
}

class LargeObject
{
    int initBy = -1;
    public int InitializedBy { get { return initBy; } }

    public LargeObject(int initializedBy)
    {
        initBy = initializedBy;
        Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy);
    }

    ~LargeObject()
    {
        Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy);
    }

    public long[] Data = new long[100000000];
}

/* This example produces output similar to the following:

Constructor: Instance initializing on thread 5
Constructor: Instance initializing on thread 4
ApplicationException: Lazy initialization function failed on thread 3.
LargeObject was initialized by thread 5; last used by thread 5.
LargeObject was initialized by thread 5; last used by thread 4.

Threads are complete. Running GC.Collect() to reclaim extra instances.
Finalizer: Instance was initialized on 4

Note that only one instance of LargeObject was used.
Press Enter to end the program

Finalizer: Instance was initialized on 5
 */
open System
open System.Threading

type LargeObject(initBy) =
    do
        printfn $"Constructor: Instance initializing on thread {initBy}"

    override _.Finalize() =
        printfn $"Finalizer: Instance was initialized on {initBy}"
    member _.InitializedBy = initBy
    member val Data = Array.zeroCreate<int64> 100000000 with get

// Factory function for lazy initialization.
let mutable instanceCount = 0
let initLargeObject () =
    if 1 = Interlocked.Increment &instanceCount then
        raise (ApplicationException $"Lazy initialization function failed on thread {Thread.CurrentThread.ManagedThreadId}.")
    LargeObject Thread.CurrentThread.ManagedThreadId

// The lazy initializer is created here. LargeObject is not created until the
// ThreadProc method executes.
let lazyLargeObject = Lazy<LargeObject>(initLargeObject, LazyThreadSafetyMode.PublicationOnly)

let threadProc (state: obj) =
    // Wait for the signal.
    let waitForStart = state :?> ManualResetEvent
    waitForStart.WaitOne() |> ignore

    try
        let large = lazyLargeObject.Value

        // The following line introduces an artificial delay to exaggerate the race condition.
        Thread.Sleep 5

        // IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the
        //            object after creation. You must lock the object before accessing it,
        //            unless the type is thread safe. (LargeObject is not thread safe.)
        lock large (fun () -> 
            large.Data[0] <- Thread.CurrentThread.ManagedThreadId
            printfn $"LargeObject was initialized by thread {large.InitializedBy} last used by thread {large.Data[0]}.")
    with :? ApplicationException as ex ->
        printfn $"ApplicationException: {ex.Message}"

// Create and start 3 threads, passing the same blocking event to all of them.
let startingGate = new ManualResetEvent false
let threads = 
    [| Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc); Thread(ParameterizedThreadStart threadProc) |]
for t in threads do
    t.Start startingGate

// Give all 3 threads time to start and wait, then release them all at once.
Thread.Sleep 50
startingGate.Set() |> ignore

// Wait for all 3 threads to finish. (The order doesn't matter.)
for t in threads do
    t.Join()

printfn "\nThreads are complete. Running GC.Collect() to reclaim extra instances."

GC.Collect()

// Allow time for garbage collection, which happens asynchronously.
Thread.Sleep 100

printfn "\nNote that only one instance of LargeObject was used."
printfn "Press Enter to end the program"
stdin.ReadLine() |> ignore

// This example produces output similar to the following:
//     Constructor: Instance initializing on thread 5
//     Constructor: Instance initializing on thread 4
//     ApplicationException: Lazy initialization function failed on thread 3.
//     LargeObject was initialized by thread 5 last used by thread 5.
//     LargeObject was initialized by thread 5 last used by thread 4.
//     
//     Threads are complete. Running GC.Collect() to reclaim extra instances.
//     Finalizer: Instance was initialized on 4
//     
//     Note that only one instance of LargeObject was used.
//     Press Enter to end the program
//     
//     Finalizer: Instance was initialized on 5
Imports System.Threading

Friend Class Program
    Private Shared lazyLargeObject As Lazy(Of LargeObject) = Nothing

    ' Factory function for lazy initialization.
    Private Shared instanceCount As Integer = 0
    Private Shared Function InitLargeObject() As LargeObject
        If 1 = Interlocked.Increment(instanceCount) Then
            Throw New ApplicationException( _
                "Lazy initialization function failed on thread " & _
                Thread.CurrentThread.ManagedThreadId & ".")
        End If
        Return New LargeObject(Thread.CurrentThread.ManagedThreadId)
    End Function

    Shared Sub Main()
        ' The lazy initializer is created here. LargeObject is not created until the 
        ' ThreadProc method executes.
        lazyLargeObject = New Lazy(Of LargeObject)(AddressOf InitLargeObject, _
             LazyThreadSafetyMode.PublicationOnly)


        ' Create and start 3 threads, passing the same blocking event to all of them.
        Dim startingGate As New ManualResetEvent(False)
        Dim threads() As Thread = { _
            New Thread(AddressOf ThreadProc), _
            New Thread(AddressOf ThreadProc), _
            New Thread(AddressOf ThreadProc) _
        }
        For Each t As Thread In threads
            t.Start(startingGate)
        Next t

        ' Give all 3 threads time to start and wait, then release them all at once.
        Thread.Sleep(50)
        startingGate.Set()

        ' Wait for all 3 threads to finish. (The order doesn't matter.)
        For Each t As Thread In threads
            t.Join()
        Next t

        Console.WriteLine(vbCrLf & _
            "Threads are complete. Running GC.Collect() to reclaim extra instances.")

        GC.Collect()

        ' Allow time for garbage collection, which happens asynchronously.
        Thread.Sleep(100)

        Console.WriteLine(vbCrLf & "Note that only one instance of LargeObject was used.")
        Console.WriteLine("Press Enter to end the program")
        Console.ReadLine()
    End Sub


    Private Shared Sub ThreadProc(ByVal state As Object)
        ' Wait for the signal.
        Dim waitForStart As ManualResetEvent = CType(state, ManualResetEvent)
        waitForStart.WaitOne()

        Dim large As LargeObject = Nothing
        Try
            large = lazyLargeObject.Value

            ' The following line introduces an artificial delay to exaggerate the race condition.
            Thread.Sleep(5)

            ' IMPORTANT: Lazy initialization is thread-safe, but it doesn't protect the  
            '            object after creation. You must lock the object before accessing it,
            '            unless the type is thread safe. (LargeObject is not thread safe.)
            SyncLock large
                large.Data(0) = Thread.CurrentThread.ManagedThreadId
                Console.WriteLine( _
                    "LargeObject was initialized by thread {0}; last used by thread {1}.", _
                    large.InitializedBy, large.Data(0))
            End SyncLock
        Catch ex As ApplicationException
            Console.WriteLine("ApplicationException: {0}", ex.Message)
        End Try
    End Sub
End Class

Friend Class LargeObject
    Private initBy As Integer = -1
    Public ReadOnly Property InitializedBy() As Integer
        Get
            Return initBy
        End Get
    End Property

    Public Sub New(ByVal initializedBy As Integer)
        initBy = initializedBy
        Console.WriteLine("Constructor: Instance initializing on thread {0}", initBy)
    End Sub

    Protected Overrides Sub Finalize()
        Console.WriteLine("Finalizer: Instance was initialized on {0}", initBy)
    End Sub

    Public Data(99999999) As Long
End Class

' This example produces output similar to the following:
'
'Constructor: Instance initializing on thread 4
'ApplicationException: Lazy initialization function failed on thread 3.
'Constructor: Instance initializing on thread 5
'LargeObject was initialized by thread 4; last used by thread 4.
'LargeObject was initialized by thread 4; last used by thread 5.
'
'Threads are complete. Running GC.Collect() to reclaim extra instances.
'Finalizer: Instance was initialized on 5
'
'Note that only one instance of LargeObject was used.
'Press Enter to end the program
'
'Finalizer: Instance was initialized on 4
'

備註

Lazy<T> 實例的線程安全模式描述多個線程嘗試初始化 Lazy<T> 實例時的行為。

除非 modeLazyThreadSafetyMode.PublicationOnly,否則會快取 valueFactory 擲回的例外狀況。 如需詳細資訊,請參閱 Lazy<T> 類別或 System.Threading.LazyThreadSafetyMode 列舉。

另請參閱

適用於