Math.Cos(Double) 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
傳回指定角的餘弦函數。
public:
static double Cos(double d);
public static double Cos (double d);
static member Cos : double -> double
Public Shared Function Cos (d As Double) As Double
參數
- d
- Double
以弧度為單位的角度。
傳回
d
的餘弦函數。 如果 d
等於 NaN、NegativeInfinity 或 PositiveInfinity,則這個方法會傳回 NaN。
範例
下列範例會使用 Cos 來評估所選角度的特定三角識別。
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using namespace System;
// Evaluate trigonometric identities with a given angle.
void UseSineCosine( double degrees )
{
double angle = Math::PI * degrees / 180.0;
double sinAngle = Math::Sin( angle );
double cosAngle = Math::Cos( angle );
// Evaluate sin^2(X) + cos^2(X) == 1.
Console::WriteLine( "\n Math::Sin({0} deg) == {1:E16}\n"
" Math::Cos({0} deg) == {2:E16}", degrees, Math::Sin( angle ), Math::Cos( angle ) );
Console::WriteLine( "(Math::Sin({0} deg))^2 + (Math::Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", 2.0 * degrees, Math::Sin( 2.0 * angle ) );
Console::WriteLine( " 2 * Math::Sin({0} deg) * Math::Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", 2.0 * degrees, Math::Cos( 2.0 * angle ) );
Console::WriteLine( "(Math::Cos({0} deg))^2 - (Math::Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
void UseTwoAngles( double degreesX, double degreesY )
{
double angleX = Math::PI * degreesX / 180.0;
double angleY = Math::PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console::WriteLine( "\n Math::Sin({0} deg) * Math::Cos({1} deg) +\n"
" Math::Cos({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Sin( angleX ) * Math::Cos( angleY ) + Math::Cos( angleX ) * Math::Sin( angleY ) );
Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", degreesX + degreesY, Math::Sin( angleX + angleY ) );
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console::WriteLine( " Math::Cos({0} deg) * Math::Cos({1} deg) -\n"
" Math::Sin({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Cos( angleX ) * Math::Cos( angleY ) - Math::Sin( angleX ) * Math::Sin( angleY ) );
Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", degreesX + degreesY, Math::Cos( angleX + angleY ) );
}
int main()
{
Console::WriteLine( "This example of trigonometric "
"Math::Sin( double ) and Math::Cos( double )\n"
"generates the following output.\n" );
Console::WriteLine( "Convert selected values for X to radians \n"
"and evaluate these trigonometric identities:" );
Console::WriteLine( " sin^2(X) + cos^2(X) == 1\n"
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console::WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine( 15.0 );
UseSineCosine( 30.0 );
UseSineCosine( 45.0 );
Console::WriteLine( "\nConvert selected values for X and Y to radians \n"
"and evaluate these trigonometric identities:" );
Console::WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console::WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles( 15.0, 30.0 );
UseTwoAngles( 30.0, 45.0 );
}
/*
This example of trigonometric Math::Sin( double ) and Math::Cos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) == 1
sin(2 * X) == 2 * sin(X) * cos(X)
cos(2 * X) == cos^2(X) - sin^2(X)
Math::Sin(15 deg) == 2.5881904510252074E-001
Math::Cos(15 deg) == 9.6592582628906831E-001
(Math::Sin(15 deg))^2 + (Math::Cos(15 deg))^2 == 1.0000000000000000E+000
Math::Sin(30 deg) == 4.9999999999999994E-001
2 * Math::Sin(15 deg) * Math::Cos(15 deg) == 4.9999999999999994E-001
Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Cos(15 deg))^2 - (Math::Sin(15 deg))^2 == 8.6602540378443871E-001
Math::Sin(30 deg) == 4.9999999999999994E-001
Math::Cos(30 deg) == 8.6602540378443871E-001
(Math::Sin(30 deg))^2 + (Math::Cos(30 deg))^2 == 1.0000000000000000E+000
Math::Sin(60 deg) == 8.6602540378443860E-001
2 * Math::Sin(30 deg) * Math::Cos(30 deg) == 8.6602540378443860E-001
Math::Cos(60 deg) == 5.0000000000000011E-001
(Math::Cos(30 deg))^2 - (Math::Sin(30 deg))^2 == 5.0000000000000022E-001
Math::Sin(45 deg) == 7.0710678118654746E-001
Math::Cos(45 deg) == 7.0710678118654757E-001
(Math::Sin(45 deg))^2 + (Math::Cos(45 deg))^2 == 1.0000000000000000E+000
Math::Sin(90 deg) == 1.0000000000000000E+000
2 * Math::Sin(45 deg) * Math::Cos(45 deg) == 1.0000000000000000E+000
Math::Cos(90 deg) == 6.1230317691118863E-017
(Math::Cos(45 deg))^2 - (Math::Sin(45 deg))^2 == 2.2204460492503131E-016
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)
Math::Sin(15 deg) * Math::Cos(30 deg) +
Math::Cos(15 deg) * Math::Sin(30 deg) == 7.0710678118654746E-001
Math::Sin(45 deg) == 7.0710678118654746E-001
Math::Cos(15 deg) * Math::Cos(30 deg) -
Math::Sin(15 deg) * Math::Sin(30 deg) == 7.0710678118654757E-001
Math::Cos(45 deg) == 7.0710678118654757E-001
Math::Sin(30 deg) * Math::Cos(45 deg) +
Math::Cos(30 deg) * Math::Sin(45 deg) == 9.6592582628906831E-001
Math::Sin(75 deg) == 9.6592582628906820E-001
Math::Cos(30 deg) * Math::Cos(45 deg) -
Math::Sin(30 deg) * Math::Sin(45 deg) == 2.5881904510252085E-001
Math::Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using System;
class SinCos
{
public static void Main()
{
Console.WriteLine(
"This example of trigonometric " +
"Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )\n" +
"generates the following output.\n" );
Console.WriteLine(
"Convert selected values for X to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin^2(X) + cos^2(X) == 1\n" +
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine(15.0);
UseSineCosine(30.0);
UseSineCosine(45.0);
Console.WriteLine(
"\nConvert selected values for X and Y to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console.WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles(15.0, 30.0);
UseTwoAngles(30.0, 45.0);
Console.WriteLine(
"\nWhen you have calls to sin(X) and cos(X) they \n" +
"can be replaced with a single call to sincos(x):" );
UseCombinedSineCosine(15.0);
UseCombinedSineCosine(30.0);
UseCombinedSineCosine(45.0);
}
// Evaluate trigonometric identities with a given angle.
static void UseCombinedSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
(double sinAngle, double cosAngle) = Math.SinCos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.SinCos({0} deg) == ({1:E16}, {2:E16})",
degrees, sinAngle, cosAngle);
Console.WriteLine(
"(double sin, double cos) = Math.SinCos({0} deg)",
degrees );
Console.WriteLine(
"sin^2 + cos^2 == {0:E16}",
sinAngle * sinAngle + cosAngle * cosAngle );
}
// Evaluate trigonometric identities with a given angle.
static void UseSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
double sinAngle = Math.Sin(angle);
double cosAngle = Math.Cos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.Sin({0} deg) == {1:E16}\n" +
" Math.Cos({0} deg) == {2:E16}",
degrees, Math.Sin(angle), Math.Cos(angle) );
Console.WriteLine(
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}",
degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
2.0 * degrees, Math.Sin(2.0 * angle) );
Console.WriteLine(
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}",
degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
2.0 * degrees, Math.Cos(2.0 * angle) );
Console.WriteLine(
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}",
degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
static void UseTwoAngles(double degreesX, double degreesY)
{
double angleX = Math.PI * degreesX / 180.0;
double angleY = Math.PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine(
"\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" +
" Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
Math.Cos(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
degreesX + degreesY, Math.Sin(angleX + angleY));
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine(
" Math.Cos({0} deg) * Math.Cos({1} deg) -\n" +
" Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
Math.Sin(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
degreesX + degreesY, Math.Cos(angleX + angleY));
}
}
/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) == 1
sin(2 * X) == 2 * sin(X) * cos(X)
cos(2 * X) == cos^2(X) - sin^2(X)
Math.Sin(15 deg) == 2.5881904510252074E-001
Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
Math.Sin(30 deg) == 4.9999999999999994E-001
2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001
Math.Sin(30 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
Math.Sin(60 deg) == 8.6602540378443860E-001
2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
Math.Sin(90 deg) == 1.0000000000000000E+000
2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)
Math.Sin(15 deg) * Math.Cos(30 deg) +
Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(15 deg) * Math.Cos(30 deg) -
Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
Math.Sin(30 deg) * Math.Cos(45 deg) +
Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
Math.Sin(75 deg) == 9.6592582628906820E-001
Math.Cos(30 deg) * Math.Cos(45 deg) -
Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
Math.Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
// In F#, the sin and cos functions may be used instead.
open System
// Evaluate trigonometric identities with a given angle.
let useSineCosine degrees =
let angle = Math.PI * degrees / 180.
let sinAngle = Math.Sin angle
let cosAngle = Math.Cos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"""
Math.Sin({degrees} deg) = {Math.Sin angle:E16}
Math.Cos({degrees} deg) = {Math.Cos angle:E16}"""
printfn $"(Math.Sin({degrees} deg))^2 + (Math.Cos({degrees} deg))^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
// Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
printfn $" Math.Sin({2. * degrees} deg) = {Math.Sin(2. * angle):E16}"
printfn $" 2 * Math.Sin({degrees} deg) * Math.Cos({degrees} deg) = {2. * sinAngle * cosAngle:E16}"
// Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
printfn $" Math.Cos({2. * degrees} deg) = {Math.Cos(2. * angle):E16}"
printfn $"(Math.Cos({degrees} deg))^2 - (Math.Sin({degrees} deg))^2 = {cosAngle * cosAngle - sinAngle * sinAngle:E16}"
// Evaluate trigonometric identities that are functions of two angles.
let useTwoAngles degreesX degreesY =
let angleX = Math.PI * degreesX / 180.
let angleY = Math.PI * degreesY / 180.
// Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
printfn $"""
Math.Sin({degreesX} deg) * Math.Cos({degreesY} deg)
Math.Cos({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Sin angleX * Math.Cos angleY + Math.Cos angleX * Math.Sin angleY:E16}"""
printfn $" Math.Sin({degreesX + degreesY} deg) = {Math.Sin(angleX + angleY):E16}"
// Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
printfn
$""" Math.Cos({degreesX} deg) * Math.Cos({degreesY} deg) -
Math.Sin({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Cos angleX * Math.Cos angleY - Math.Sin angleX * Math.Sin angleY:E16}"""
printfn $" Math.Cos({degreesX + degreesY} deg) = {Math.Cos(angleX + angleY):E16}"
// Evaluate trigonometric identities with a given angle.
let useCombinedSineCosine degrees =
let angle = Math.PI * degrees / 180.
let struct(sinAngle, cosAngle) = Math.SinCos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"\n Math.SinCos({degrees} deg) = ({sinAngle:E16}, {cosAngle:E16})"
printfn $"(double sin, double cos) = Math.SinCos({degrees} deg)"
printfn $"sin^2 + cos^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
printfn
"""This example of trigonometric
Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) = 1\n sin(2 * X) = 2 * sin(X) * cos(X)
cos(2 * X) = cos^2(X) - sin^2(X)
cos(2 * X) = cos^2(X) - sin^2(X)
"""
useSineCosine 15.
useSineCosine 30.
useSineCosine 45.
printfn """
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
"""
useTwoAngles 15. 30.
useTwoAngles 30. 45.
printfn """
When you have calls to sin(X) and cos(X) they
can be replaced with a single call to sincos(x):"""
useCombinedSineCosine 15.
useCombinedSineCosine 30.
useCombinedSineCosine 45.
// This example of trigonometric Math.Sin( double ) and Math.Cos( double )
// generates the following output.
//
// Convert selected values for X to radians
// and evaluate these trigonometric identities:
// sin^2(X) + cos^2(X) = 1
// sin(2 * X) = 2 * sin(X) * cos(X)
// cos(2 * X) = cos^2(X) - sin^2(X)
//
// Math.Sin(15 deg) = 2.5881904510252074E-001
// Math.Cos(15 deg) = 9.6592582628906831E-001
// (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
// Math.Sin(30 deg) = 4.9999999999999994E-001
// 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
//
// Math.Sin(30 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
// Math.Sin(60 deg) = 8.6602540378443860E-001
// 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
// Math.Cos(60 deg) = 5.0000000000000011E-001
// (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
//
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
// (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
// Math.Sin(90 deg) = 1.0000000000000000E+000
// 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
// Math.Cos(90 deg) = 6.1230317691118863E-017
// (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
//
// Convert selected values for X and Y to radians
// and evaluate these trigonometric identities:
// sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
// cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
//
// Math.Sin(15 deg) * Math.Cos(30 deg) +
// Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(15 deg) * Math.Cos(30 deg) -
// Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
//
// Math.Sin(30 deg) * Math.Cos(45 deg) +
// Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
// Math.Sin(75 deg) = 9.6592582628906820E-001
// Math.Cos(30 deg) * Math.Cos(45 deg) -
// Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
// Math.Cos(75 deg) = 2.5881904510252096E-001
' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods.
Module SinCos
Sub Main()
Console.WriteLine( _
"This example of trigonometric " & _
"Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Convert selected values for X to radians " & vbCrLf & _
"and evaluate these trigonometric identities:")
Console.WriteLine( _
" sin^2(X) + cos^2(X) = 1" & vbCrLf & _
" sin(2 * X) = 2 * sin(X) * cos(X)")
Console.WriteLine(" cos(2 * X) = cos^2(X) - sin^2(X)")
UseSineCosine(15.0)
UseSineCosine(30.0)
UseSineCosine(45.0)
Console.WriteLine( _
vbCrLf & "Convert selected values for X and Y to radians" & _
vbCrLf & "and evaluate these trigonometric identities:")
Console.WriteLine(" sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)")
Console.WriteLine(" cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)")
UseTwoAngles(15.0, 30.0)
UseTwoAngles(30.0, 45.0)
End Sub
' Evaluate trigonometric identities with a given angle.
Sub UseSineCosine(degrees As Double)
Dim angle As Double = Math.PI * degrees / 180.0
Dim sinAngle As Double = Math.Sin(angle)
Dim cosAngle As Double = Math.Cos(angle)
' Evaluate sin^2(X) + cos^2(X) = 1.
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) = {1:E16}" & _
vbCrLf & " Math.Cos({0} deg) = {2:E16}", _
degrees, Math.Sin(angle), Math.Cos(angle))
Console.WriteLine( _
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _
degrees, sinAngle * sinAngle + cosAngle * cosAngle)
' Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
2.0 * degrees, Math.Sin(2.0 * angle))
Console.WriteLine( _
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _
degrees, 2.0 * sinAngle * cosAngle)
' Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
2.0 * degrees, Math.Cos(2.0 * angle))
Console.WriteLine( _
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _
degrees, cosAngle * cosAngle - sinAngle * sinAngle)
End Sub
' Evaluate trigonometric identities that are functions of two angles.
Sub UseTwoAngles(degreesX As Double, degreesY As Double)
Dim angleX As Double = Math.PI * degreesX / 180.0
Dim angleY As Double = Math.PI * degreesY / 180.0
' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) * Math.Cos({1} deg) +" & _
vbCrLf & " Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _
Math.Cos(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Sin(angleX + angleY))
' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine( _
" Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _
" Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _
Math.Sin(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Cos(angleX + angleY))
End Sub
End Module 'SinCos
' This example of trigonometric Math.Sin( double ) and Math.Cos( double )
' generates the following output.
'
' Convert selected values for X to radians
' and evaluate these trigonometric identities:
' sin^2(X) + cos^2(X) = 1
' sin(2 * X) = 2 * sin(X) * cos(X)
' cos(2 * X) = cos^2(X) - sin^2(X)
'
' Math.Sin(15 deg) = 2.5881904510252074E-001
' Math.Cos(15 deg) = 9.6592582628906831E-001
' (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
' Math.Sin(30 deg) = 4.9999999999999994E-001
' 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
' Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
'
' Math.Sin(30 deg) = 4.9999999999999994E-001
' Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
' Math.Sin(60 deg) = 8.6602540378443860E-001
' 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
' Math.Cos(60 deg) = 5.0000000000000011E-001
' (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
'
' Math.Sin(45 deg) = 7.0710678118654746E-001
' Math.Cos(45 deg) = 7.0710678118654757E-001
' (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
' Math.Sin(90 deg) = 1.0000000000000000E+000
' 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
' Math.Cos(90 deg) = 6.1230317691118863E-017
' (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
'
' Convert selected values for X and Y to radians
' and evaluate these trigonometric identities:
' sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
' cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
'
' Math.Sin(15 deg) * Math.Cos(30 deg) +
' Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
' Math.Sin(45 deg) = 7.0710678118654746E-001
' Math.Cos(15 deg) * Math.Cos(30 deg) -
' Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
' Math.Cos(45 deg) = 7.0710678118654757E-001
'
' Math.Sin(30 deg) * Math.Cos(45 deg) +
' Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
' Math.Sin(75 deg) = 9.6592582628906820E-001
' Math.Cos(30 deg) * Math.Cos(45 deg) -
' Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
' Math.Cos(75 deg) = 2.5881904510252096E-001
備註
角度 d
必須以弧度為單位。 乘以 Math.PI /180 將度轉換成弧度。
這個方法會呼叫基礎 C 執行時間,而且不同的作業系統或架構之間,確切的結果或有效輸入範圍可能會不同。