KernelExpansionCatalog.ApproximatedKernelMap Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Vytvořte, ApproximatedKernelMappingEstimator která mapuje vstupní vektory na prostor s nízkou dimenzionální funkcí, kde vnitřní produkty přibližují funkci invariantního jádra posunu.
public static Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator ApproximatedKernelMap (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, int rank = 1000, bool useCosAndSinBases = false, Microsoft.ML.Transforms.KernelBase generator = default, int? seed = default);
static member ApproximatedKernelMap : Microsoft.ML.TransformsCatalog * string * string * int * bool * Microsoft.ML.Transforms.KernelBase * Nullable<int> -> Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator
<Extension()>
Public Function ApproximatedKernelMap (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional rank As Integer = 1000, Optional useCosAndSinBases As Boolean = false, Optional generator As KernelBase = Nothing, Optional seed As Nullable(Of Integer) = Nothing) As ApproximatedKernelMappingEstimator
Parametry
- catalog
- TransformsCatalog
Katalog transformace.
- outputColumnName
- String
Název sloupce, který je výsledkem transformace inputColumnName
.
Datový typ v tomto sloupci bude známým vektorem Singlevelikosti .
- inputColumnName
- String
Název sloupce, který se má transformovat. Pokud je nastavená hodnota null
, použije se jako zdroj hodnota outputColumnName
.
Tento estimátor pracuje se známým vektorem datového Single typu.
- rank
- Int32
Rozměr prostoru funkce pro namapování vstupu.
- useCosAndSinBases
- Boolean
Pokud true
pro každou náhodnou frekvenci Fourieru použijete obě funkce kosa a základní funkce hříchu. V opačném případě by se použily pouze kosy. Všimněte si, že pokud je nastavená true
hodnota , rozměr výstupního prostoru funkce bude 2*rank
.
- generator
- KernelBase
Argument, který označuje, které jádro se má použít. Dvě dostupné implementace jsou GaussianKernel a LaplacianKernel.
Počáteční pole generátoru náhodných čísel pro generování nových funkcí (pokud není zadáno, použije se globální náhodný argument).
Návraty
Příklady
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
namespace Samples.Dynamic
{
public static class ApproximatedKernelMap
{
// Transform feature vector to another non-linear space. See
// https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[7] { 1, 1, 0, 0, 1, 0, 1} },
new DataPoint(){ Features = new float[7] { 0, 0, 1, 0, 0, 1, 1} },
new DataPoint(){ Features = new float[7] {-1, 1, 0,-1,-1, 0,-1} },
new DataPoint(){ Features = new float[7] { 0,-1, 0, 1, 0,-1,-1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// ApproximatedKernel map takes data and maps it's to a random
// low -dimensional space.
var approximation = mlContext.Transforms.ApproximatedKernelMap(
"Features", rank: 4, generator: new GaussianKernel(gamma: 0.7f),
seed: 1);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// -0.0119, 0.5867, 0.4942, 0.7041
// 0.4720, 0.5639, 0.4346, 0.2671
// -0.2243, 0.7071, 0.7053, -0.1681
// 0.0846, 0.5836, 0.6575, 0.0581
}
private class DataPoint
{
[VectorType(7)]
public float[] Features { get; set; }
}
}
}