StandardTrainersCatalog.AveragedPerceptron Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Přetížení
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options) |
Vytvořte s AveragedPerceptronTrainer pokročilými možnostmi, které predikují cíl pomocí lineárního binárního klasifikačního modelu natrénovaného na základě dat logických popisků. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32) |
AveragedPerceptronTrainerVytvořte objekt , který predikuje cíl pomocí lineárního binárního klasifikačního modelu natrénovaného na základě logických dat popisků. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options)
Vytvořte s AveragedPerceptronTrainer pokročilými možnostmi, které predikují cíl pomocí lineárního binárního klasifikačního modelu natrénovaného na základě dat logických popisků.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options options);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As AveragedPerceptronTrainer.Options) As AveragedPerceptronTrainer
Parametry
Objekt trenéra katalogu binární klasifikace.
Možnosti trenéra.
Návraty
Příklady
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptronWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new AveragedPerceptronTrainer.Options
{
LossFunction = new SmoothedHingeLoss(),
LearningRate = 0.1f,
LazyUpdate = false,
RecencyGain = 0.1f,
NumberOfIterations = 10
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.89
// AUC: 0.96
// F1 Score: 0.88
// Negative Precision: 0.87
// Negative Recall: 0.92
// Positive Precision: 0.91
// Positive Recall: 0.85
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Platí pro
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
AveragedPerceptronTrainerVytvořte objekt , který predikuje cíl pomocí lineárního binárního klasifikačního modelu natrénovaného na základě logických dat popisků.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 10);
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 1);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * Microsoft.ML.Trainers.IClassificationLoss * single * bool * single * int -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 10) As AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 1) As AveragedPerceptronTrainer
Parametry
Objekt trenéra katalogu binární klasifikace.
- featureColumnName
- String
Název sloupce funkce. Data ve sloupci musí být vektorem známé velikosti Single.
- lossFunction
- IClassificationLoss
Funkce ztráty minimalizovaná v procesu trénování. Pokud null
by byl použit , HingeLoss a vést k maximální marži průměrně perceptron trenér.
- learningRate
- Single
Počáteční míra učení používaná SGD.
- decreaseLearningRate
- Boolean
true
snížit learningRate
průběh iterací; v opačném případě false
.
Výchozí je false
.
- l2Regularization
- Single
Hmotnost L2 pro regularizaci.
- numberOfIterations
- Int32
Počet průchodů trénovací datovou sadou
Návraty
Příklady
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptron
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: False
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.72
// AUC: 0.79
// F1 Score: 0.68
// Negative Precision: 0.71
// Negative Recall: 0.80
// Positive Precision: 0.74
// Positive Recall: 0.63
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}