TimeSeriesCatalog.DetectChangePointBySsa Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Přetížení
DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double) |
Vytvořte SsaChangePointEstimator, který predikuje body změn v časových řadách pomocí jednotné analýzy spektra (SSA). |
DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double) |
Zastaralé.
Vytvořte SsaChangePointEstimator, který predikuje body změn v časových řadách pomocí jednotné analýzy spektra (SSA). |
DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)
Vytvořte SsaChangePointEstimator, který predikuje body změn v časových řadách pomocí jednotné analýzy spektra (SSA).
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator
Parametry
- catalog
- TransformsCatalog
Katalog transformace.
- outputColumnName
- String
Název sloupce, který je výsledkem transformace inputColumnName
.
Data ve sloupci jsou vektorem Double. Vektor obsahuje 4 prvky: výstraha (nenulová hodnota znamená bod změny), nezpracované skóre, p-Hodnota a martingale skóre.
- inputColumnName
- String
Název sloupce, který se má transformovat. Data sloupce musí být Single.
Pokud je nastavená hodnota null
, použije se jako zdroj hodnota outputColumnName
.
- confidence
- Double
Spolehlivost detekce bodu změny v rozsahu [0, 100].
- changeHistoryLength
- Int32
Velikost posuvného okna pro výpočet p-hodnoty.
- trainingWindowSize
- Int32
Počet bodů od začátku sekvence použité pro trénování.
- seasonalityWindowSize
- Int32
Horní mez největší relevantní sezónnosti ve vstupní časové řadě.
- errorFunction
- ErrorFunction
Funkce použitá k výpočtu chyby mezi očekávanou a pozorovanou hodnotou.
- martingale
- MartingaleType
Martingale se použil k bodování.
- eps
- Double
Epsilon parametr power martingale.
Návraty
Příklady
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectChangePointBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed. This estimator can
// account for temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and then a
// change in trend
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a change point
new TimeSeriesData(0),
new TimeSeriesData(100),
new TimeSeriesData(200),
new TimeSeriesData(300),
new TimeSeriesData(400),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ChangePointPrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectChangePointBySsa(
outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
SeasonalitySize + 1).Fit(dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine(outputColumnName + " column obtained " +
"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 0 0 -2.53 0.50 0.00
// 1 0 -0.01 0.01 0.00
// 2 0 0.76 0.14 0.00
// 3 0 0.69 0.28 0.00
// 4 0 1.44 0.18 0.00
// 0 0 -1.84 0.17 0.00
// 1 0 0.22 0.44 0.00
// 2 0 0.20 0.45 0.00
// 3 0 0.16 0.47 0.00
// 4 0 1.33 0.18 0.00
// 0 0 -1.79 0.07 0.00
// 1 0 0.16 0.50 0.00
// 2 0 0.09 0.50 0.00
// 3 0 0.08 0.45 0.00
// 4 0 1.31 0.12 0.00
// 0 0 -1.79 0.07 0.00
// 100 1 99.16 0.00 4031.94 <-- alert is on, predicted changepoint
// 200 0 185.23 0.00 731260.87
// 300 0 270.40 0.01 3578470.47
// 400 0 357.11 0.03 45298370.86
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}
Platí pro
DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)
Upozornění
This API method is deprecated, please use the overload with confidence parameter of type double.
Vytvořte SsaChangePointEstimator, který predikuje body změn v časových řadách pomocí jednotné analýzy spektra (SSA).
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator
Parametry
- catalog
- TransformsCatalog
Katalog transformace.
- outputColumnName
- String
Název sloupce, který je výsledkem transformace inputColumnName
.
Data ve sloupci jsou vektorem Double. Vektor obsahuje 4 prvky: výstraha (nenulová hodnota znamená bod změny), nezpracované skóre, p-Hodnota a martingale skóre.
- inputColumnName
- String
Název sloupce, který se má transformovat. Data sloupce musí být Single.
Pokud je nastavená hodnota null
, použije se jako zdroj hodnota outputColumnName
.
- confidence
- Int32
Spolehlivost detekce bodu změny v rozsahu [0, 100].
- changeHistoryLength
- Int32
Velikost posuvného okna pro výpočet p-hodnoty.
- trainingWindowSize
- Int32
Počet bodů od začátku sekvence použité pro trénování.
- seasonalityWindowSize
- Int32
Horní mez největší relevantní sezónnosti ve vstupní časové řadě.
- errorFunction
- ErrorFunction
Funkce použitá k výpočtu chyby mezi očekávanou a pozorovanou hodnotou.
- martingale
- MartingaleType
Martingale se použil k bodování.
- eps
- Double
Epsilon parametr power martingale.
Návraty
- Atributy
Příklady
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectChangePointBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed. This estimator can
// account for temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and then a
// change in trend
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a change point
new TimeSeriesData(0),
new TimeSeriesData(100),
new TimeSeriesData(200),
new TimeSeriesData(300),
new TimeSeriesData(400),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(ChangePointPrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectChangePointBySsa(
outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
SeasonalitySize + 1).Fit(dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine(outputColumnName + " column obtained " +
"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 0 0 -2.53 0.50 0.00
// 1 0 -0.01 0.01 0.00
// 2 0 0.76 0.14 0.00
// 3 0 0.69 0.28 0.00
// 4 0 1.44 0.18 0.00
// 0 0 -1.84 0.17 0.00
// 1 0 0.22 0.44 0.00
// 2 0 0.20 0.45 0.00
// 3 0 0.16 0.47 0.00
// 4 0 1.33 0.18 0.00
// 0 0 -1.79 0.07 0.00
// 1 0 0.16 0.50 0.00
// 2 0 0.09 0.50 0.00
// 3 0 0.08 0.45 0.00
// 4 0 1.31 0.12 0.00
// 0 0 -1.79 0.07 0.00
// 100 1 99.16 0.00 4031.94 <-- alert is on, predicted changepoint
// 200 0 185.23 0.00 731260.87
// 300 0 270.40 0.01 3578470.47
// 400 0 357.11 0.03 45298370.86
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}