LightGbmMulticlassTrainer Třída
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Pro IEstimator<TTransformer> trénování posíleného modelu klasifikace rozhodovacího stromu s více třídami pomocí LightGBM.
public sealed class LightGbmMulticlassTrainer : Microsoft.ML.Trainers.LightGbm.LightGbmTrainerBase<Microsoft.ML.Trainers.LightGbm.LightGbmMulticlassTrainer.Options,Microsoft.ML.Data.VBuffer<float>,Microsoft.ML.Data.MulticlassPredictionTransformer<Microsoft.ML.Trainers.OneVersusAllModelParameters>,Microsoft.ML.Trainers.OneVersusAllModelParameters>
type LightGbmMulticlassTrainer = class
inherit LightGbmTrainerBase<LightGbmMulticlassTrainer.Options, VBuffer<single>, MulticlassPredictionTransformer<OneVersusAllModelParameters>, OneVersusAllModelParameters>
Public NotInheritable Class LightGbmMulticlassTrainer
Inherits LightGbmTrainerBase(Of LightGbmMulticlassTrainer.Options, VBuffer(Of Single), MulticlassPredictionTransformer(Of OneVersusAllModelParameters), OneVersusAllModelParameters)
- Dědičnost
Poznámky
K vytvoření tohoto trenéra použijte LightGbm nebo LightGbm(Options).
Vstupní a výstupní sloupce
Vstupní data sloupce popisku musí být klíčovým typem a sloupec funkce musí být známým vektorem Singlevelikosti .
Tento trenér vypíše následující sloupce:
Název výstupního sloupce | Typ sloupce | Description |
---|---|---|
Score |
Vektor Single | Skóre všech tříd. Vyšší hodnota znamená, že vyšší pravděpodobnost spadá do přidružené třídy. Pokud má i-th element největší hodnotu, predikovaný index popisku by byl i. Všimněte si, že i je index založený na nule. |
PredictedLabel |
typ klíče | Index predikovaného popisku. Pokud je jeho hodnota i, skutečný popisek by byl i-th kategorií ve vstupním typu popisku s hodnotou klíče. |
Charakteristiky trenéra
Úloha strojového učení | Klasifikace s více třídami |
Vyžaduje se normalizace? | No |
Vyžaduje se ukládání do mezipaměti? | No |
Požadovaný NuGet kromě Microsoft.ML | Microsoft.ML.LightGbm |
Exportovatelné do ONNX | Yes |
Podrobnosti trénovacího algoritmu
LightGBM je open source implementace rozhodovacího stromu podporujícího přechod. Podrobnosti o implementaci najdete v oficiální dokumentaci k LightGBM nebo v tomto dokumentu.
V části Viz také najdete odkazy na příklady použití.
Pole
FeatureColumn |
Sloupec funkcí, který trenér očekává. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
Volitelný sloupec groupID, který očekává trenér hodnocení. (Zděděno od TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
Sloupec popisku, který trenér očekává. Může to být |
WeightColumn |
Sloupec hmotnosti, který trenér očekává. Může to být |
Vlastnosti
Info |
Pro IEstimator<TTransformer> trénování posíleného modelu klasifikace rozhodovacího stromu s více třídami pomocí LightGBM. (Zděděno od LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>) |
Metody
Fit(IDataView, IDataView) |
Trénuje LightGbmMulticlassTrainer pomocí trénovacích i ověřovacích dat, vrátí MulticlassPredictionTransformer<TModel>hodnotu . |
Fit(IDataView) |
Vlaky a vrací hodnotu ITransformer. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Pro IEstimator<TTransformer> trénování posíleného modelu klasifikace rozhodovacího stromu s více třídami pomocí LightGBM. (Zděděno od TrainerEstimatorBase<TTransformer,TModel>) |
Metody rozšíření
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Připojte k řetězci estimátoru kontrolní bod ukládání do mezipaměti. Tím zajistíte, aby podřízené estimátory byly vytrénovány proti datům uloženým v mezipaměti. Před průchodem více dat je užitečné mít kontrolní bod ukládání do mezipaměti. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Vzhledem k estimátoru vraťte zalamovací objekt, který zavolá delegáta jednou Fit(IDataView) . Často je důležité, aby odhadovač vrátil informace o tom, co bylo vhodné, což je důvod, proč Fit(IDataView) metoda vrací konkrétně typ objekt, nikoli jen obecné ITransformer. Ve stejnou dobu se však často vytvářejí do kanálů s mnoha objekty, takže možná budeme muset vytvořit řetězec estimátorů, kde EstimatorChain<TLastTransformer> je odhadovač, IEstimator<TTransformer> pro který chceme získat transformátor, zakopán někde v tomto řetězci. Pro tento scénář můžeme prostřednictvím této metody připojit delegáta, který bude volána po zavolání fit. |
Platí pro
Viz také
- LightGbm(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Nullable<Int32>, Nullable<Int32>, Nullable<Double>, Int32)
- LightGbm(MulticlassClassificationCatalog+MulticlassClassificationTrainers, LightGbmMulticlassTrainer+Options)
- LightGbmMulticlassTrainer.Options