Sdílet prostřednictvím


BigInteger.Max(BigInteger, BigInteger) Metoda

Definice

Vrátí větší ze dvou BigInteger hodnot.

public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right);
public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right) = System::Numerics::INumber<System::Numerics::BigInteger>::Max;
public static System.Numerics.BigInteger Max (System.Numerics.BigInteger left, System.Numerics.BigInteger right);
static member Max : System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigInteger
Public Shared Function Max (left As BigInteger, right As BigInteger) As BigInteger

Parametry

left
BigInteger

První hodnota pro porovnání.

right
BigInteger

Druhá hodnota pro porovnání.

Návraty

Parametr left nebo right podle toho, který parametr je větší.

Implementuje

Příklady

Následující příklad používá metodu Max k výběru největšího čísla v matici BigInteger hodnot.

using System;
using System.Numerics;

public class Example
{
   public static void Main()
   {
      BigInteger[] numbers = { Int64.MaxValue * BigInteger.MinusOne,
                               BigInteger.MinusOne,
                               10359321239000,
                               BigInteger.Pow(103988, 2),
                               BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue),
                               BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2),
                               BigInteger.Pow(Int32.MaxValue, 2)) };
      if (numbers.Length < 2)
      {
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length);
         return;
      }

      BigInteger largest = numbers[numbers.GetLowerBound(0)];

      for (int ctr = numbers.GetLowerBound(0) + 1; ctr <= numbers.GetUpperBound(0); ctr++)
         largest = BigInteger.Max(largest, numbers[ctr]);

      Console.WriteLine("The values:");
      foreach (BigInteger number in numbers)
         Console.WriteLine("{0,55:N0}", number);

      Console.WriteLine("\nThe largest number of the series is:");
      Console.WriteLine("   {0:N0}", largest);
   }
}
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
open System
open System.Numerics

let numbers =
    [| bigint Int64.MaxValue * BigInteger.MinusOne
       BigInteger.MinusOne
       10359321239000I
       BigInteger.Pow(103988I, 2)
       BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue)
       BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), BigInteger.Pow(Int32.MaxValue, 2)) |]

if numbers.Length < 2 then
    printfn $"Cannot determine which is the larger of {numbers.Length} numbers."
else
    let mutable largest = numbers[0]

    for ctr = 1 to numbers.Length - 1 do
        largest <- BigInteger.Max(largest, numbers[ctr])

    printfn "The values:"

    for number in numbers do
        printfn $"{number, 55:N0}"

    printfn "\nThe largest number of the series is:"
    printfn $"   {largest:N0}"
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
Imports System.Numerics

Module Example
   Public Sub Main()
      Dim numbers() As BigInteger = { Int64.MaxValue * BigInteger.MinusOne, 
                                      BigInteger.MinusOne, 
                                      10359321239000, 
                                      BigInteger.Pow(103988, 2),
                                      BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue), 
                                      BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), 
                                                     BigInteger.Pow(Int32.MaxValue, 2)) }
      If numbers.Length < 2 Then 
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length)
         Exit Sub
      End If
           
      Dim largest As BigInteger = numbers(numbers.GetLowerBound(0))
      
      For ctr As Integer = numbers.GetLowerBound(0) + 1 To numbers.GetUpperBound(0)
         largest = BigInteger.Max(largest, numbers(ctr))
      Next
      Console.WriteLine("The values:")
      For Each number As BigInteger In numbers
         Console.WriteLine("{0,55:N0}", number)
      Next   
      Console.WriteLine()
      Console.WriteLine("The largest number of the series is:")
      Console.WriteLine("   {0:N0}", largest)   
   End Sub
End Module
' The example displays the following output:
'       The values:
'                                    -9,223,372,036,854,775,807
'                                                            -1
'                                            10,359,321,239,000
'                                                10,813,504,144
'                                            70,366,596,661,249
'            85,070,591,730,234,615,852,008,593,798,364,921,858
'       
'       The largest number of the series is:
'          85,070,591,730,234,615,852,008,593,798,364,921,858

Poznámky

Tato metoda odpovídá Math.Max metodě pro primitivní číselné typy.

Platí pro

Viz také