Vigtigt
Du skal være en del af Frontier-forhåndsversionsprogrammet for at få tidlig adgang til Microsoft Agent 365. Frontier forbinder dig direkte med Microsofts seneste AI-innovationer. Frontier-forhåndsversioner er underlagt de eksisterende forhåndsversionsbetingelser i dine kundeaftaler. Da disse funktioner stadig er under udvikling, kan deres tilgængelighed og egenskaber ændre sig over tid.
Hvis du vil deltage i Agent 365-økosystemet, skal du føje funktioner for Agent 365-observerbarhed til din agent. Agent 365-observerbarhed bygger på OpenTelemetry (OTel) og giver en samlet struktur til at registrere telemetri på en ensartet og sikker måde på tværs af alle agentplatforme. Ved at implementere denne påkrævede komponent giver du it-administratorer mulighed for at overvåge din agents aktivitet i Microsoft Administration (MAC), og du giver sikkerhedsteams tilladelse til at bruge Defender og Purview til overholdelse og trusselsregistrering.
Vigtigste fordele
-
Komplet synlighed: Hent omfattende telemetri for hver agentaktivering, herunder sessioner, værktøjskald og undtagelser, hvilket giver dig fuld sporing på tværs af platforme.
-
Aktivering af sikkerhed og overholdelse af angivne standarder: Indfør samlede overvågningslogge i Defender og Purview, hvilket muliggør avancerede sikkerhedsscenarier og rapportering af overholdelse af angivne standarder for din agent.
-
Fleksibilitet på tværs af platforme: Bygger på OTel-standarder og understøtter forskellige kørsler og platforme, f.eks. Copilot Studio, Foundry og fremtidige agentstrukturer.
-
Driftseffektivitet for administratorer: Angiv central observerbarhed i MAC, hvilket reducerer fejlfindingstiden og forbedrer styringen med rollebaserede adgangskontroller for it-teams, der administrerer din agent.
Installation
Brug disse kommandoer til at installere modulerne for observerbarhed for de sprog, der understøttes af Agent 365.
pip install microsoft-agents-a365-observability-core
pip install microsoft-agents-a365-runtime
npm install @microsoft/agents-a365-observability
npm install @microsoft/agents-a365-runtime
dotnet add package Microsoft.Agents.A365.Observability
dotnet add package Microsoft.Agents.A365.Observability.Runtime
Konfiguration
De miljøvariabler, der kræves for observerbarhed, er:
| Miljøvariabel |
Beskrivelse |
ENABLE_OBSERVABILITY=true |
Markér for at aktivere/deaktivere sporing. Som standard false |
ENABLE_A365_OBSERVABILITY_EXPORTER=true |
True eksporterer logge til vores tjeneste. Ellers falder det tilbage til konsoleksportøren |
from microsoft_agents_a365.observability.core import config
def token_resolver(agent_id: str, tenant_id: str) -> str | None:
# Implement secure token retrieval here
return "Bearer <token>"
config.configure(
service_name="my-agent-service",
service_namespace="my.namespace",
token_resolver=token_resolver,
)
Udeluk tokenløsningsfunktion for at logføre på konsollen.
De miljøvariabler, der kræves for observerbarhed, er:
| Miljøvariabel |
Beskrivelse |
ENABLE_OBSERVABILITY=true |
Markér for at aktivere/deaktivere sporing. Som standard false |
ENABLE_A365_OBSERVABILITY_EXPORTER=true |
True eksporterer logge til vores tjeneste. Ellers falder det tilbage til konsoleksportøren |
import { ObservabilityManager } from '@microsoft/agents-a365-observability';
const tokenResolver = (agentId, tenantId) => {
// Your token resolution logic here
return "your-token";
};
// Advanced configuration with builder pattern
const builder = ObservabilityManager.configure(builder =>
builder
.withService('my-agent-service', '1.0.0')
.withTokenResolver((agentId, tenantId) => {
return tokenResolver(agentId, tenantId);
})
);
builder.start();
Angiv EnableAgent365Exporter til true i appsettings.json.
I Program.cs skal du føje Agent365ExporterOptions til tjenestesamlingen. Denne ændring konfigurerer den stedfortræder, som sporingseksportøren bruger til at hente tokenet.
Tilføj afhængigheder, der er relateret til observerbarhed, ved hjælp af AddA365Tracing().
using Microsoft.Agents.A365.Observability.Runtime;
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton(sp =>
{
return new Agent365ExporterOptions
{
ClusterCategory = "prod",
TokenResolver = async (agentId, tenantId) =>
{
// It's recommended to implement caching in your token provider for performance.
var token = await tokenProvider.GetObservabilityTokenAsync(agentId, tenantId);
return token;
}
};
});
builder.AddA365Tracing();
Bagageattributter
Brug BaggageBuilder til at angive kontekstafhængige oplysninger, der flyder gennem alle områder i en anmodning.
SDK'et implementerer en SpanProcessor og kopierer alle ikke-tomme bagageposter til nystartede områder uden at overskrive eksisterende attributter.
from microsoft_agents_a365.observability.core.middleware.baggage_builder import BaggageBuilder
with (
BaggageBuilder()
.tenant_id("tenant-123")
.agent_id("agent-456")
.correlation_id("corr-789")
.build()
):
# Any spans started in this context will receive these as attributes
pass
import { BaggageBuilder } from '@microsoft/agents-a365-observability';
// Create and apply baggage context
using baggageScope = new BaggageBuilder()
// Core identifiers
.tenantId('tenant-123')
.agentId('agent-456')
.correlationId('correlation-789')
.build();
// Execute operations within the baggage context
baggageScope.run(() => {
// All spans created within this context will inherit the baggage values
// Invoke another agent
using agentScope = InvokeAgentScope.start(invokeDetails, agentDetails, tenantDetails);
// ... agent logic
// Execute tools
using toolScope = ExecuteToolScope.start(toolDetails, agentDetails, tenantDetails);
// ... tool logic
});
using var baggageScope = new BaggageBuilder()
.TenantId('tenant-123')
.AgentId('agent-456')
.CorrelationId('correlation-789')
.Build();
// Any spans started in this context will receive them as attributes.
Tokenløsningsfunktion
Når du bruger Agent 365-eksportøren, skal du angive en tokenløsningsfunktion, der returnerer godkendelsestoken.
Når du bruger Agent 365-observerbarheds-SDK'et med Agent Hosting-strukturen, kan du generere tokens ved hjælp af TurnContext fra agentaktiviteterne
from microsoft_agents.activity import load_configuration_from_env
from microsoft_agents.authentication.msal import MsalConnectionManager
from microsoft_agents.hosting.aiohttp import CloudAdapter
from microsoft_agents.hosting.core import (
AgentApplication,
Authorization,
MemoryStorage,
TurnContext,
TurnState,
)
from microsoft_agents_a365.runtime.environment_utils import (
get_observability_authentication_scope,
)
agents_sdk_config = load_configuration_from_env(environ)
STORAGE = MemoryStorage()
CONNECTION_MANAGER = MsalConnectionManager(**agents_sdk_config)
ADAPTER = CloudAdapter(connection_manager=CONNECTION_MANAGER)
ADAPTER.use(TranscriptLoggerMiddleware(ConsoleTranscriptLogger()))
AUTHORIZATION = Authorization(STORAGE, CONNECTION_MANAGER, **agents_sdk_config)
AGENT_APP = AgentApplication[TurnState](
storage=STORAGE, adapter=ADAPTER, authorization=AUTHORIZATION, **agents_sdk_config
)
@AGENT_APP.activity("message", auth_handlers=["AGENTIC"])
async def on_message(context: TurnContext, _state: TurnState):
aau_auth_token = await AGENT_APP.auth.exchange_token(
context,
scopes=get_observability_authentication_scope(),
auth_handler_id="AGENTIC",
)
# cache this auth token and return via token resolver
import {
TurnState,
AgentApplication,
MemoryStorage,
TurnContext,
} from '@microsoft/agents-hosting';
import { Activity, ActivityTypes } from '@microsoft/agents-activity';
import { getObservabilityAuthenticationScope } from '@microsoft/agents-a365-runtime';
interface ConversationState {
count: number;
}
type ApplicationTurnState = TurnState<ConversationState>;
const downloader = new AttachmentDownloader();
const storage = new MemoryStorage();
export const agentApplication = new AgentApplication<ApplicationTurnState>({
authorization: {
agentic: { } // We have the type and scopes set in the .env file
},
storage,
});
agentApplication.onActivity(
ActivityTypes.Message,
async (context: TurnContext, state: ApplicationTurnState) => {
const aauAuthToken = await agentApplication.authorization.exchangeToken(context,'agentic', {
scopes: getObservabilityAuthenticationScope()
} )
// cache this auth token and return via token resolver
};
Føj den agentbaserede tokenløsningsfunktion til din tjenestesamling.
using Microsoft.Agents.A365.Observability;
builder.Services.AddAgenticTracingExporter();
Registrer tokenet i agentprogrammet.
using Microsoft.Agents.Builder;
using Microsoft.Agents.Core.Models;
using Microsoft.Extensions.Logging;
using Microsoft.Agents.A365.Observability.Caching;
using System;
using System.Threading.Tasks;
public class MyAgent : AgentApplication
{
private readonly IExporterTokenCache<AgenticTokenStruct> _agentTokenCache;
private readonly ILogger<MyAgent> _logger;
public MyAgent(AgentApplicationOptions options, IExporterTokenCache<AgenticTokenStruct> agentTokenCache, ILogger<MyAgent> logger)
: base(options)
{
_agentTokenCache = agentTokenCache ?? throw new ArgumentNullException(nameof(agentTokenCache));
_logger = logger ?? throw new ArgumentNullException(nameof(logger));
}
protected async Task MessageActivityAsync(ITurnContext turnContext, ITurnState turnState, CancellationToken cancellationToken)
{
using var baggageScope = new BaggageBuilder()
.TenantId(turnContext.Activity.Recipient.TenantId)
.AgentId(turnContext.Activity.Recipient.AgenticAppId)
.Build();
try
{
_agentTokenCache.RegisterObservability(
turnContext.Activity.Recipient.AgenticAppId,
turnContext.Activity.Recipient.TenantId,
new AgenticTokenStruct
{
UserAuthorization = UserAuthorization,
TurnContext = turnContext
},
EnvironmentUtils.GetObservabilityAuthenticationScope()
);
}
catch (Exception ex)
{
_logger.LogWarning($"Error registering for observability: {ex.Message}");
}
}
}
Automatisk instrumentering
Automatisk instrumentering lytter automatisk til eksisterende telemetrisignaler for agentbaserede strukturer (SDK'er) efter sporinger og videresender dem til tjenesten Agent 365-observerbarhed. Dette fjerner behovet for, at udviklere skal skrive overvågningskoden manuelt, forenkler konfigurationen og sikrer ensartet sporing af ydeevnen.
Automatisk instrumentering understøttes på tværs af flere SDK'er og platforme:
Bemærk
Understøttelse af automatisk instrumentering varierer afhængigt af platforms- og SDK-implementering.
Semantisk kerne
Automatisk instrumentering kræver brug af bagagegenerator. Angiv agent-id og lejer-id ved hjælp af BaggageBuilder.
Installere pakken
pip install microsoft-agents-a365-observability-extensions-semantic-kernel
Konfigurer observerbarhed
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.semantic_kernel import SemanticKernelInstrumentor
# Configure observability
configure(
service_name="my-semantic-kernel-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
instrumentor = SemanticKernelInstrumentor()
instrumentor.instrument()
# Your Semantic Kernel code is now automatically traced
Semantic Kernel understøttes ikke med JavaScript.
Føj afhængigheder til tjenestesamlingen.
using Microsoft.Agents.A365.Observability.Extensions.SemanticKernel;
builder.Services.AddTracing(config => config.WithSemanticKernel());
Angiv AgentId og TenantId ved hjælp af BaggageBuilder. Sørg for, at det id, der bruges ved oprettelse af en ChatCompletionAgent, svarer til det agent-id, der er overført til BaggageBuilder.
using Microsoft.Agents.A365.Observability.Extensions.SemanticKernel;
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
var chatCompletionAgent = new ChatCompletionAgent
{
// NOTE: This will be the agent ID with which the TokenResolver delegate is invoked. Should match above.
Id = <your-agent-id>,
...
};
}
}
OpenAI
Automatisk instrumentering kræver brug af bagagegenerator. Angiv agent-id og lejer-id ved hjælp af BaggageBuilder.
Installere pakken.
pip install microsoft-agents-a365-observability-extensions-openai
Konfigurer observerbarhed.
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.openai_agents import OpenAIAgentsTraceInstrumentor
# Configure observability
configure(
service_name="my-openai-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
instrumentor = OpenAIAgentsTraceInstrumentor()
instrumentor.instrument()
# Your OpenAI Agents code is now automatically traced
Installere pakken
npm install @microsoft/agents-a365-observability-extensions-openai
Konfigurer observerbarhed
import { ObservabilityManager } from '@microsoft/agents-a365-observability';
import { OpenAIAgentsTraceInstrumentor } from '@microsoft/agents-a365-observability-extensions-openai';
// Configure observability first
const sdk = ObservabilityManager.configure((builder) =>
builder
.withService('My Agent Service', '1.0.0')
.withConsoleExporter(true)
);
// Create and enable the instrumentor
const instrumentor = new OpenAIAgentsTraceInstrumentor({
enabled: true,
tracerName: 'openai-agents-tracer',
tracerVersion: '1.0.0'
});
sdk.start();
instrumentor.enable();
Føj afhængigheder til tjenestesamlingen.
using Microsoft.Agents.A365.Observability.Extensions.OpenAI;
builder.Services.AddTracing(config => config.WithOpenAI());
Angiv AgentId og TenantId ved hjælp af BaggageBuilder. I forbindelse med værktøjskald skal du starte en sporing ved hjælp af Trace() på en ChatToolCall-forekomst.
using Microsoft.Agents.A365.Observability.Extensions.OpenAI;
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
// NOTE: This will be the agent and tenant ID with which the TokenResolver delegate will be invoked.
using var scope = chatToolCall.Trace(agentId: <your-agent-id>, <your-tenant-id>);
}
}
Agent Framework
Automatisk instrumentering kræver brug af bagagegenerator. Angiv agent-id og lejer-id ved hjælp af BaggageBuilder.
Installere pakken
pip install microsoft-agents-a365-observability-extensions-agent-framework
Konfigurer observerbarhed
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.agentframework.trace_instrumentor import (
AgentFrameworkInstrumentor,
)
# Configure observability
configure(
service_name="AgentFrameworkTracingWithAzureOpenAI",
service_namespace="AgentFrameworkTesting",
)
# Enable auto-instrumentation
AgentFrameworkInstrumentor().instrument()
Agent Framework understøttes ikke med JavaScript.
Føj afhængigheder til tjenestesamlingen.
using Microsoft.Agents.A365.Observability.Extensions.AgentFramework;
builder.Services.AddTracing(config => config.WithAgentFramework());
Angiv AgentId og TenantId ved hjælp af BaggageBuilder.
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent : AgentApplication
{
protected async Task MessageActivityAsync(ITurnContext turnContext, ITurnState turnState, CancellationToken cancellationToken)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
}
}
LangChain Framework
Automatisk instrumentering kræver brug af bagagegenerator. Angiv agent-id og lejer-id ved hjælp af BaggageBuilder.
Installere pakken.
pip install microsoft-agents-a365-observability-extensions-langchain
Konfigurer observerbarhed
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.langchain import CustomLangChainInstrumentor
# Configure observability
configure(
service_name="my-langchain-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
CustomLangChainInstrumentor()
# Your LangChain code is now automatically traced
Manuel instrumentering
Agent 365-observerbarheds-SDK'et kan bruges til at forstå agentens interne arbejde.
SDK'et indeholder tre områder, der kan startes: InvokeAgentScope, ExecuteToolScope og InferenceScope.
Agentaktivering
Dette område skal bruges i starten af agentprocessen. Med området for aktivering af agent henter du egenskaber som den aktuelle agent, der aktiveres, agentbrugerdata osv.
from microsoft_agents_a365.observability.core.invoke_agent_scope import InvokeAgentScope
from microsoft_agents_a365.observability.core.invoke_agent_details import InvokeAgentDetails
from microsoft_agents_a365.observability.core.tenant_details import TenantDetails
from microsoft_agents_a365.observability.core.request import Request
invoke_details = InvokeAgentDetails(
details=agent_details, # AgentDetails instance
endpoint=my_endpoint, # Optional endpoint (with hostname/port)
session_id="session-42"
)
tenant_details = TenantDetails(tenant_id="tenant-123")
req = Request(content="User asks a question")
with InvokeAgentScope.start(invoke_details, tenant_details, req):
# Perform agent invocation logic
response = call_agent(...)
import {
InvokeAgentScope,
ExecutionType,
CallerDetails,
EnhancedAgentDetails
} from '@microsoft/agents-a365-observability';
// Basic agent invocation details
const invokeDetails = {
agentId: 'email-agent-123',
agentName: 'Email Assistant',
...
}
};
const tenantDetails = {
tenantId: 'tenant-789'
};
// Optional: Caller details (human user)
const callerDetails: CallerDetails = {};
// Optional: Caller agent details (for agent-to-agent calls)
const callerAgentDetails: EnhancedAgentDetails = {};
// Enhanced invocation with caller context
using scope = InvokeAgentScope.start(
invokeDetails,
tenantDetails,
callerAgentDetails,
callerDetails
);
try {
// Record input messages
scope.recordInputMessages(['Please help me organize my emails', 'Focus on urgent items']);
// Your agent invocation logic here
const response = await invokeAgent(invokeDetails.request.content);
// Record output messages
scope.recordOutputMessages(['I found 15 urgent emails', 'Here is your organized inbox']);
} catch (error) {
scope.recordError(error as Error);
throw error;
}
// Scope automatically disposed at end of using block
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "MyAgent",
agentDescription: "Handles user requests.",
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var request = new Request(
content: userInput,
executionType: ExecutionType.HumanToAgent,
sessionId: "session-abc",
channelMetadata: new ChannelMetadata("webchat", "https://webchat.contoso.com")
);
var callerDetails = new CallerDetails(
callerId: "user-123",
callerName: "Jane Doe",
callerUpn: "jane.doe@contoso.com",
callerUserId: "user-uuid-456",
tenantId: "tenant-789"
);
var endpoint = new Uri("https://myagent.contoso.com");
var invokeAgentDetails = new InvokeAgentDetails(endpoint, agentDetails, sessionId: "session-abc");
var conversationId = "conv-xyz";
// Start the scope
using var scope = InvokeAgentScope.Start(
invokeAgentDetails: invokeAgentDetails,
tenantDetails: tenantDetails,
request: request,
callerAgentDetails: null,
callerDetails: callerDetails,
conversationId: conversationId
);
// Record input messages
scope.RecordInputMessages(new[] { userInput });
// ... your agent logic here ...
// Simulate agent processing and output
var output = $"Processed: {userInput}";
scope.RecordOutputMessages(new[] { output });
// Optionally record a single response
scope.RecordResponse(output);
return new AgentResponse { Content = output };
}
}
public class AgentResponse
{
public string Content { get; set; }
}
Følgende eksempler viser, hvordan du instrumenterer din agents værktøjsudførelse med registrering af observerbarhed for at registrere telemetri til overvågnings- og revisionsformål.
from microsoft_agents_a365.observability.core.execute_tool_scope import ExecuteToolScope
from microsoft_agents_a365.observability.core.tool_call_details import ToolCallDetails
tool_details = ToolCallDetails(
tool_name="summarize",
tool_type="function",
tool_call_id="tc-001",
arguments="{'text': '...'}",
description="Summarize provided text",
endpoint=None # or endpoint object with hostname/port
)
with ExecuteToolScope.start(tool_details, agent_details, tenant_details):
result = run_tool(tool_details)
import { ExecuteToolScope } from '@microsoft/agents-a365-observability';
const toolDetails = {
toolName: 'email-search',
arguments: JSON.stringify({ query: 'from:boss@company.com', limit: 10 }),
toolCallId: 'tool-call-456',
description: 'Search emails by criteria',
toolType: 'function',
endpoint: {
host: 'tools.contoso.com',
port: 8080, // Will be recorded since not 443
protocol: 'https'
}
};
using scope = ExecuteToolScope.start(toolDetails, agentDetails, tenantDetails);
try {
// Execute the tool
const result = await searchEmails(toolDetails.arguments);
// Record the tool execution result
scope.recordResponse(JSON.stringify(result));
return result;
} catch (error) {
scope.recordError(error as Error);
throw error;
}
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyToolAgent
{
public async Task<ToolResult> ExecuteTool(string toolName, object parameters)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "ToolAgent",
agentDescription: "Executes tools for users.",
agentAUID: "tool-auid-123",
agentUPN: "toolagent@contoso.com",
agentBlueprintId: "tool-blueprint-456",
agentType: AgentType.EntraEmbodied,
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var endpoint = new Uri("https://toolagent.contoso.com:8443");
var toolCallDetails = new ToolCallDetails(
toolName: toolName,
arguments: System.Text.Json.JsonSerializer.Serialize(parameters),
toolCallId: Guid.NewGuid().ToString(),
description: "Runs a tool operation.",
toolType: "custom-type",
endpoint: endpoint
);
// Start the scope
using var scope = ExecuteToolScope.Start(
toolCallDetails: toolCallDetails,
agentDetails: agentDetails,
tenantDetails: tenantDetails
);
// ... your tool logic here ...
// Record response
var toolOutput = $"Tool '{toolName}' processed with parameters: {System.Text.Json.JsonSerializer.Serialize(parameters)}";
scope.RecordResponse(toolOutput);
return new ToolResult { Output = toolOutput };
}
}
public class ToolResult
{
public string Output { get; set; }
}
Inferens
I følgende eksempler kan du se, hvordan du instrumenter inferenskald til AI-modeller med registrering af observerbarhed for at registrere tokenanvendelse, modeldetaljer og svarmetadata.
from microsoft_agents_a365.observability.core.inference_scope import InferenceScope
from microsoft_agents_a365.observability.core.inference_call_details import InferenceCallDetails
from microsoft_agents_a365.observability.core.request import Request
inference_details = InferenceCallDetails(
operationName=SomeEnumOrValue("chat"),
model="gpt-4o-mini",
providerName="azure-openai",
inputTokens=123,
outputTokens=456,
finishReasons=["stop"],
responseId="resp-987"
)
req = Request(content="Explain quantum computing simply.")
with InferenceScope.start(inference_details, agent_details, tenant_details, req):
completion = call_llm(...)
import { InferenceScope, InferenceOperationType } from '@microsoft/agents-a365-observability';
const inferenceDetails = {
operationName: InferenceOperationType.CHAT,
model: 'gpt-4',
providerName: 'openai',
inputTokens: 150,
outputTokens: 75,
finishReasons: ['stop'],
responseId: 'resp-123456'
};
using scope = InferenceScope.start(inferenceDetails, agentDetails, tenantDetails);
try {
// Record input messages
scope.recordInputMessages(['Summarize the following emails for me...']);
// Call the LLM
const response = await callLLM();
// Record detailed telemetry with granular methods
scope.recordOutputMessages(['Here is your email summary...']);
scope.recordInputTokens(145); // Update if different from constructor
scope.recordOutputTokens(82); // Update if different from constructor
scope.recordResponseId('resp-789123');
scope.recordFinishReasons(['stop', 'max_tokens']);
return response.text;
} catch (error) {
scope.recordError(error as Error);
throw error;
}
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyInferenceAgent
{
public async Task<InferenceResult> RunInference(string input)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "InferenceAgent",
agentDescription: "Performs generative AI inference.",
agentAUID: "inference-auid-123",
agentUPN: "inferenceagent@contoso.com",
agentBlueprintId: "inference-blueprint-456",
agentType: AgentType.EntraEmbodied,
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var inferenceDetails = new InferenceCallDetails(
operationName: InferenceOperationType.Chat,
model: "gpt-4",
providerName: "OpenAI",
inputTokens: 42,
outputTokens: 84,
finishReasons: new[] { "stop", "length" },
responseId: "response-xyz"
);
// Start the scope
using var scope = InferenceScope.Start(
details: inferenceDetails,
agentDetails: agentDetails,
tenantDetails: tenantDetails
);
// ... your inference logic here ...
// Record input/output messages and other telemetry
scope.RecordInputMessages(new[] { input, "additional context" });
scope.RecordOutputMessages(new[] { "AI response message" });
scope.RecordInputTokens(42);
scope.RecordOutputTokens(84);
scope.RecordResponseId("response-xyz");
scope.RecordFinishReasons(new[] { "stop", "length" });
scope.RecordThoughtProcess("Reasoning step 1; step 2");
return new InferenceResult { Output = "AI response message" };
}
}
public class InferenceResult
{
public string Output { get; set; }
}
Valider lokalt
Angiv miljøvariablen ENABLE_A365_OBSERVABILITY_EXPORTER til false. Denne eksport strækker sig over (spores) til konsollen.
Angiv miljøvariablen ENABLE_A365_OBSERVABILITY_EXPORTER til false. Denne eksport strækker sig over (spores) til konsollen.
Angiv EnableAgent365Exporter til false i appsettings.json. Denne eksport strækker sig over (spores) til konsollen.
Test din agent med observerbarhed
Når du har implementeret observerbarhed i din agent, skal du teste for at sikre, at telemetri registreres korrekt. Følg testvejledningen for at konfigurere dit miljø, og fokuser derefter primært på sektionen Vis observerbarhedslogge for at validere, at implementeringen af observerbarhed fungerer som forventet.