ConversationAuthoringClient Class
The language service conversations API is a suite of natural language processing (NLP) skills that can be used to analyze structured conversations (textual or spoken). Further documentation can be found in https://docs.microsoft.com/azure/cognitive-services/language-service/overview.
Constructor
ConversationAuthoringClient(endpoint: str, credential: AzureKeyCredential | TokenCredential, **kwargs: Any)
Parameters
Name | Description |
---|---|
endpoint
Required
|
Supported Cognitive Services endpoint (e.g.,
https:// |
credential
Required
|
Credential needed for the client to connect to Azure. This can be the an instance of AzureKeyCredential if using a Language API key or a token credential from identity. |
Keyword-Only Parameters
Name | Description |
---|---|
api_version
|
Api Version. Available values are "2023-04-01" and "2022-05-01". Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Methods
begin_cancel_training_job
Triggers a cancellation for a running training job.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/cancel-training-job for more information.
begin_cancel_training_job(project_name: str, job_id: str, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"result": {
"modelLabel": "str", # Represents trained model label. Required.
"trainingConfigVersion": "str", # Represents training config
version. Required.
"trainingStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"estimatedEndDateTime": "2020-02-20 00:00:00", # Optional.
Represents the estimated end date time for training and evaluation.
"evaluationStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"trainingMode": "str" # Optional. Represents the mode of the
training operation. Known values are: "advanced" and "standard".
},
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_delete_deployment
Deletes a project deployment.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/delete-deployment for more information.
begin_delete_deployment(project_name: str, deployment_name: str, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
deployment_name
Required
|
The name of the specific deployment of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_delete_project
Deletes a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/delete-project for more information.
begin_delete_project(project_name: str, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_deploy_project
Creates a new deployment or replaces an existing one.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/deploy-project for more information.
begin_deploy_project(project_name: str, deployment_name: str, deployment: MutableMapping[str, Any] | IO, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
deployment_name
Required
|
The name of the specific deployment of the project to use. Required. |
deployment
Required
|
<xref:JSON> or
IO
The new deployment info. Is either a JSON type or a IO type. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
content_type
|
Body Parameter content-type. Known values are: 'application/json'. Default value is None. |
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# JSON input template you can fill out and use as your body input.
deployment = {
"trainedModelLabel": "str" # Represents the trained model label. Required.
}
# response body for status code(s): 200
response == {
"deploymentExpirationDate": "2020-02-20", # Represents deployment expiration
date in the runtime. Required.
"deploymentName": "str", # Represents deployment name. Required.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Represents deployment last
deployed time. Required.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Represents deployment last
trained time. Required.
"modelId": "str", # Represents deployment modelId. Required.
"modelTrainingConfigVersion": "str" # Represents model training config
version. Required.
}
begin_export_project
Triggers a job to export a project's data.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/export for more information.
begin_export_project(project_name: str, *, string_index_type: str, exported_project_format: str | None = None, asset_kind: str | None = None, trained_model_label: str | None = None, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
string_index_type
|
Specifies the method used to interpret string offsets. For additional information see https://aka.ms/text-analytics-offsets. "Utf16CodeUnit" Required. |
exported_project_format
|
The format of the exported project file to use. Known values are: "Conversation" and "Luis". Default value is None. Default value: None
|
asset_kind
|
Kind of asset to export. Default value is None. Default value: None
|
trained_model_label
|
Trained model label to export. If the trainedModelLabel is null, the default behavior is to export the current working copy. Default value is None. Default value: None
|
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"resultUrl": "str", # Optional. The URL to use in order to download the
exported project.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_import_project
Triggers a job to import a project. If a project with the same name already exists, the data of that project is replaced.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/import for more information.
begin_import_project(project_name: str, project: MutableMapping[str, Any] | IO, *, exported_project_format: str | None = None, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
project
Required
|
<xref:JSON> or
IO
The project data to import. Is either a JSON type or a IO type. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
exported_project_format
|
The format of the exported project file to use. Known values are: "Conversation" and "Luis". Default value is None. Default value: None
|
content_type
|
Body Parameter content-type. Known values are: 'application/json'. Default value is None. |
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# The input is polymorphic. The following are possible polymorphic inputs based off
discriminator "projectKind":
# JSON input template for discriminator value "Conversation":
exported_project_assets = {
"projectKind": "Conversation",
"entities": [
{
"category": "str", # The category of the entity. Required.
"compositionSetting": "str", # Optional. The behavior to
follow when the entity's components overlap with each other. Known values
are: "returnLongestOverlap", "requireExactOverlap", "separateComponents",
and "combineComponents".
"list": {
"sublists": [
{
"listKey": "str", # Optional. The
key of the sub-list.
"synonyms": [
{
"language": "str", #
Optional. Represents the language of the synonyms.
This is BCP-47 representation of a language. For
example, use "en" for English, "en-gb" for English
(UK), "es" for Spanish etc.
"values": [
"str" #
Optional. The list of synonyms.
]
}
]
}
]
},
"prebuilts": [
{
"category": "str" # The prebuilt entity
category. Required.
}
],
"regex": {
"expressions": [
{
"language": "str", # Optional.
Represents the language of the regex expression. This is
BCP-47 representation of a language. For example, use "en"
for English, "en-gb" for English (UK), "es" for Spanish etc.
"regexKey": "str", # Optional. The
key of the regex expression.
"regexPattern": "str" # Optional.
The regex pattern.
}
]
},
"requiredComponents": [
"str" # Optional. The required components. Allowed
values are 'learned', 'list', 'prebuilts' and 'regex'.
]
}
],
"intents": [
{
"category": "str" # The intent category. Required.
}
],
"utterances": [
{
"intent": "str", # The intent of the utterance. Required.
"text": "str", # The utterance text. Required.
"dataset": "str", # Optional. The dataset for this
utterance. Allowed values are 'Train' and 'Test'.
"entities": [
{
"category": "str", # The category of the
entity label. Required.
"length": 0, # Length for the entity text.
Required.
"offset": 0 # Start position for the entity
text. Required.
}
],
"language": "str" # Optional. Represents the utterance's
language. This is BCP-47 representation of a language. For example, use
"en" for English, "en-gb" for English (UK), "es" for Spanish etc.
}
]
}
# JSON input template for discriminator value "Orchestration":
exported_project_assets = {
"projectKind": "Orchestration",
"intents": [
{
"category": "str", # The intent category. Required.
"orchestration": exported_orchestration_options
}
],
"utterances": [
{
"intent": "str", # The intent of the utterance. Required.
"text": "str", # The utterance text. Required.
"dataset": "str", # Optional. The dataset for this
utterance. Allowed values are 'Train' and 'Test'.
"language": "str" # Optional. Represents the utterance's
language. This is BCP-47 representation of a language. For example, use
"en" for English, "en-gb" for English (UK), "es" for Spanish etc.
}
]
}
# JSON input template you can fill out and use as your body input.
project = {
"metadata": {
"language": "str", # The project language. This is BCP-47
representation of a language. For example, use "en" for English, "en-gb" for
English (UK), "es" for Spanish etc. Required.
"projectKind": "str", # Represents the project kind. Required. Known
values are: "Conversation" and "Orchestration".
"projectName": "str", # The new project name. Required.
"description": "str", # Optional. The project description.
"multilingual": bool, # Optional. Whether the project would be used
for multiple languages or not.
"settings": {
"confidenceThreshold": 0.0 # The threshold of the intent
with the highest confidence, at which the prediction will automatically
be changed to "None". The value of the threshold should be between 0 and
1 inclusive. Required.
}
},
"projectFileVersion": "str", # The version of the exported file. Required.
"stringIndexType": "str", # Specifies the method used to interpret string
offsets. For additional information see https://aka.ms/text-analytics-offsets.
Required. "Utf16CodeUnit"
"assets": exported_project_assets
}
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_load_snapshot
Restores the snapshot of this trained model to be the current working directory of the project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/load-snapshot for more information.
begin_load_snapshot(project_name: str, trained_model_label: str, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_swap_deployments
Swaps two existing deployments with each other.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/swap-deployments for more information.
begin_swap_deployments(project_name: str, deployments: MutableMapping[str, Any] | IO, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
deployments
Required
|
<xref:JSON> or
IO
The job object to swap two deployments. Is either a JSON type or a IO type. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
content_type
|
Body Parameter content-type. Known values are: 'application/json'. Default value is None. |
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# JSON input template you can fill out and use as your body input.
deployments = {
"firstDeploymentName": "str", # Represents the first deployment name.
Required.
"secondDeploymentName": "str" # Represents the second deployment name.
Required.
}
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
begin_train
Triggers a training job for a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/train for more information.
begin_train(project_name: str, configuration: MutableMapping[str, Any] | IO, **kwargs: Any) -> LROPoller[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
configuration
Required
|
<xref:JSON> or
IO
The training input parameters. Is either a JSON type or a IO type. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
content_type
|
Body Parameter content-type. Known values are: 'application/json'. Default value is None. |
continuation_token
|
A continuation token to restart a poller from a saved state. |
polling
|
By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. |
polling_interval
|
Default waiting time between two polls for LRO operations if no Retry-After header is present. |
Returns
Type | Description |
---|---|
LROPoller[<xref:JSON>]
|
An instance of LROPoller that returns JSON object |
Exceptions
Type | Description |
---|---|
Examples
# JSON input template you can fill out and use as your body input.
configuration = {
"modelLabel": "str", # Represents the output model label. Required.
"trainingMode": "str", # Represents the mode of the training operation.
Required. Known values are: "advanced" and "standard".
"evaluationOptions": {
"kind": "str", # Optional. Represents the evaluation kind. By
default, the evaluation kind is set to percentage. Known values are:
"percentage" and "manual".
"testingSplitPercentage": 0, # Optional. Represents the testing
dataset split percentage. Only needed in case the evaluation kind is
percentage.
"trainingSplitPercentage": 0 # Optional. Represents the training
dataset split percentage. Only needed in case the evaluation kind is
percentage.
},
"trainingConfigVersion": "str" # Optional. Represents training config
version. By default, "latest" value is used which uses the latest released
training config version.
}
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"result": {
"modelLabel": "str", # Represents trained model label. Required.
"trainingConfigVersion": "str", # Represents training config
version. Required.
"trainingStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"estimatedEndDateTime": "2020-02-20 00:00:00", # Optional.
Represents the estimated end date time for training and evaluation.
"evaluationStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"trainingMode": "str" # Optional. Represents the mode of the
training operation. Known values are: "advanced" and "standard".
},
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
close
close() -> None
create_project
Creates a new project or updates an existing one.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/create-project for more information.
create_project(project_name: str, project: MutableMapping[str, Any] | IO, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
project
Required
|
<xref:JSON> or
IO
The project parameters. Is either a JSON type or a IO type. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
content_type
|
Body Parameter content-type. Known values are: 'application/merge-patch+json'. Default value is None. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# JSON input template you can fill out and use as your body input.
project = {
"language": "str", # The project language. This is BCP-47 representation of
a language. For example, use "en" for English, "en-gb" for English (UK), "es" for
Spanish etc. Required.
"projectKind": "str", # Represents the project kind. Required. Known values
are: "Conversation" and "Orchestration".
"projectName": "str", # The new project name. Required.
"description": "str", # Optional. The project description.
"multilingual": bool, # Optional. Whether the project would be used for
multiple languages or not.
"settings": {
"confidenceThreshold": 0.0 # The threshold of the intent with the
highest confidence, at which the prediction will automatically be changed to
"None". The value of the threshold should be between 0 and 1 inclusive.
Required.
}
}
# response body for status code(s): 200, 201
response == {
"createdDateTime": "2020-02-20 00:00:00", # Represents the project creation
datetime. Required.
"language": "str", # The project language. This is BCP-47 representation of
a language. For example, use "en" for English, "en-gb" for English (UK), "es" for
Spanish etc. Required.
"lastModifiedDateTime": "2020-02-20 00:00:00", # Represents the project
creation datetime. Required.
"projectKind": "str", # Represents the project kind. Required. Known values
are: "Conversation" and "Orchestration".
"projectName": "str", # The new project name. Required.
"description": "str", # Optional. The project description.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last deployed datetime.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last trained datetime.
"multilingual": bool, # Optional. Whether the project would be used for
multiple languages or not.
"settings": {
"confidenceThreshold": 0.0 # The threshold of the intent with the
highest confidence, at which the prediction will automatically be changed to
"None". The value of the threshold should be between 0 and 1 inclusive.
Required.
}
}
delete_trained_model
Deletes an existing trained model.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/delete-trained-model for more information.
delete_trained_model(project_name: str, trained_model_label: str, **kwargs: Any) -> None
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
Returns
Type | Description |
---|---|
None |
Exceptions
Type | Description |
---|---|
get_deployment
Gets the details of a deployment.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-deployment for more information.
get_deployment(project_name: str, deployment_name: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
deployment_name
Required
|
The name of the specific deployment of the project to use. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"deploymentExpirationDate": "2020-02-20", # Represents deployment expiration
date in the runtime. Required.
"deploymentName": "str", # Represents deployment name. Required.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Represents deployment last
deployed time. Required.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Represents deployment last
trained time. Required.
"modelId": "str", # Represents deployment modelId. Required.
"modelTrainingConfigVersion": "str" # Represents model training config
version. Required.
}
get_deployment_job_status
Gets the status of an existing deployment job.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-deployment-status for more information.
get_deployment_job_status(project_name: str, deployment_name: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
deployment_name
Required
|
The name of the specific deployment of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_export_project_job_status
Gets the status of an export job. Once job completes, returns the project metadata, and assets.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-export-status for more information.
get_export_project_job_status(project_name: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"resultUrl": "str", # Optional. The URL to use in order to download the
exported project.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_import_project_job_status
Gets the status for an import.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-import-status for more information.
get_import_project_job_status(project_name: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_load_snapshot_job_status
Gets the status for loading a snapshot.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-load-snapshot-status for more information.
get_load_snapshot_job_status(project_name: str, trained_model_label: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_model_evaluation_summary
Gets the evaluation summary of a trained model. The summary includes high level performance measurements of the model e.g., F1, Precision, Recall, etc.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-model-evaluation-summary for more information.
get_model_evaluation_summary(project_name: str, trained_model_label: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"entitiesEvaluation": {
"confusionMatrix": {
"str": {
"str": {
"normalizedValue": 0.0, # Represents
normalized value in percentages. Required.
"rawValue": 0.0 # Represents raw value.
Required.
}
}
},
"entities": {
"str": {
"f1": 0.0, # Represents the model precision.
Required.
"falseNegativeCount": 0, # Represents the count of
false negative. Required.
"falsePositiveCount": 0, # Represents the count of
false positive. Required.
"precision": 0.0, # Represents the model recall.
Required.
"recall": 0.0, # Represents the model F1 score.
Required.
"trueNegativeCount": 0, # Represents the count of
true negative. Required.
"truePositiveCount": 0 # Represents the count of
true positive. Required.
}
},
"macroF1": 0.0, # Represents the macro F1. Required.
"macroPrecision": 0.0, # Represents the macro precision. Required.
"macroRecall": 0.0, # Represents the macro recall. Required.
"microF1": 0.0, # Represents the micro F1. Required.
"microPrecision": 0.0, # Represents the micro precision. Required.
"microRecall": 0.0 # Represents the micro recall. Required.
},
"intentsEvaluation": {
"confusionMatrix": {
"str": {
"str": {
"normalizedValue": 0.0, # Represents
normalized value in percentages. Required.
"rawValue": 0.0 # Represents raw value.
Required.
}
}
},
"intents": {
"str": {
"f1": 0.0, # Represents the model precision.
Required.
"falseNegativeCount": 0, # Represents the count of
false negative. Required.
"falsePositiveCount": 0, # Represents the count of
false positive. Required.
"precision": 0.0, # Represents the model recall.
Required.
"recall": 0.0, # Represents the model F1 score.
Required.
"trueNegativeCount": 0, # Represents the count of
true negative. Required.
"truePositiveCount": 0 # Represents the count of
true positive. Required.
}
},
"macroF1": 0.0, # Represents the macro F1. Required.
"macroPrecision": 0.0, # Represents the macro precision. Required.
"macroRecall": 0.0, # Represents the macro recall. Required.
"microF1": 0.0, # Represents the micro F1. Required.
"microPrecision": 0.0, # Represents the micro precision. Required.
"microRecall": 0.0 # Represents the micro recall. Required.
},
"evaluationOptions": {
"kind": "str", # Optional. Represents the evaluation kind. By
default, the evaluation kind is set to percentage. Known values are:
"percentage" and "manual".
"testingSplitPercentage": 0, # Optional. Represents the testing
dataset split percentage. Only needed in case the evaluation kind is
percentage.
"trainingSplitPercentage": 0 # Optional. Represents the training
dataset split percentage. Only needed in case the evaluation kind is
percentage.
}
}
get_project
Gets the details of a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-project for more information.
get_project(project_name: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # Represents the project creation
datetime. Required.
"language": "str", # The project language. This is BCP-47 representation of
a language. For example, use "en" for English, "en-gb" for English (UK), "es" for
Spanish etc. Required.
"lastModifiedDateTime": "2020-02-20 00:00:00", # Represents the project
creation datetime. Required.
"projectKind": "str", # Represents the project kind. Required. Known values
are: "Conversation" and "Orchestration".
"projectName": "str", # The new project name. Required.
"description": "str", # Optional. The project description.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last deployed datetime.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last trained datetime.
"multilingual": bool, # Optional. Whether the project would be used for
multiple languages or not.
"settings": {
"confidenceThreshold": 0.0 # The threshold of the intent with the
highest confidence, at which the prediction will automatically be changed to
"None". The value of the threshold should be between 0 and 1 inclusive.
Required.
}
}
get_project_deletion_job_status
Gets the status for a project deletion job.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-project-deletion-status for more information.
get_project_deletion_job_status(job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_swap_deployments_job_status
Gets the status of an existing swap deployment job.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-swap-deployments-status for more information.
get_swap_deployments_job_status(project_name: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
get_trained_model
Gets the details of a trained model.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-trained-model for more information.
get_trained_model(project_name: str, trained_model_label: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"hasSnapshot": bool, # The flag to indicate if the trained model has a
snapshot ready. Required.
"label": "str", # The trained model label. Required.
"lastTrainedDateTime": "2020-02-20 00:00:00", # The last trained date time
of the model. Required.
"lastTrainingDurationInSeconds": 0, # The duration of the model's last
training request in seconds. Required.
"modelExpirationDate": "2020-02-20", # The model expiration date. Required.
"modelId": "str", # The model ID. Required.
"modelTrainingConfigVersion": "str" # The model training config version.
Required.
}
get_training_job_status
Gets the status for a training job.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-training-status for more information.
get_training_job_status(project_name: str, job_id: str, **kwargs: Any) -> MutableMapping[str, Any]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
job_id
Required
|
The job ID. Required. |
Returns
Type | Description |
---|---|
<xref:JSON>
|
JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"result": {
"modelLabel": "str", # Represents trained model label. Required.
"trainingConfigVersion": "str", # Represents training config
version. Required.
"trainingStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"estimatedEndDateTime": "2020-02-20 00:00:00", # Optional.
Represents the estimated end date time for training and evaluation.
"evaluationStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"trainingMode": "str" # Optional. Represents the mode of the
training operation. Known values are: "advanced" and "standard".
},
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
list_deployments
Lists the deployments belonging to a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/list-deployments for more information.
list_deployments(project_name: str, *, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"deploymentExpirationDate": "2020-02-20", # Represents deployment expiration
date in the runtime. Required.
"deploymentName": "str", # Represents deployment name. Required.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Represents deployment last
deployed time. Required.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Represents deployment last
trained time. Required.
"modelId": "str", # Represents deployment modelId. Required.
"modelTrainingConfigVersion": "str" # Represents model training config
version. Required.
}
list_model_evaluation_results
Gets the detailed results of the evaluation for a trained model. This includes the raw inference results for the data included in the evaluation process.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-model-evaluation-results for more information.
list_model_evaluation_results(project_name: str, trained_model_label: str, *, string_index_type: str, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
trained_model_label
Required
|
The trained model label. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
string_index_type
|
Specifies the method used to interpret string offsets. For additional information see https://aka.ms/text-analytics-offsets. "Utf16CodeUnit" Required. |
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"entitiesResult": {
"expectedEntities": [
{
"category": "str", # Represents the entity category.
Required.
"length": 0, # Represents the entity length.
Required.
"offset": 0 # Represents the entity offset index
relative to the original text. Required.
}
],
"predictedEntities": [
{
"category": "str", # Represents the entity category.
Required.
"length": 0, # Represents the entity length.
Required.
"offset": 0 # Represents the entity offset index
relative to the original text. Required.
}
]
},
"intentsResult": {
"expectedIntent": "str", # Represents the utterance's expected
intent. Required.
"predictedIntent": "str" # Represents the utterance's predicted
intent. Required.
},
"language": "str", # Represents the utterance language. This is BCP-47
representation of a language. For example, use "en" for English, "en-gb" for
English (UK), "es" for Spanish etc. Required.
"text": "str" # Represents the utterance text. Required.
}
list_projects
Lists the existing projects.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/list-projects for more information.
list_projects(*, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Keyword-Only Parameters
Name | Description |
---|---|
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # Represents the project creation
datetime. Required.
"language": "str", # The project language. This is BCP-47 representation of
a language. For example, use "en" for English, "en-gb" for English (UK), "es" for
Spanish etc. Required.
"lastModifiedDateTime": "2020-02-20 00:00:00", # Represents the project
creation datetime. Required.
"projectKind": "str", # Represents the project kind. Required. Known values
are: "Conversation" and "Orchestration".
"projectName": "str", # The new project name. Required.
"description": "str", # Optional. The project description.
"lastDeployedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last deployed datetime.
"lastTrainedDateTime": "2020-02-20 00:00:00", # Optional. Represents the
project last trained datetime.
"multilingual": bool, # Optional. Whether the project would be used for
multiple languages or not.
"settings": {
"confidenceThreshold": 0.0 # The threshold of the intent with the
highest confidence, at which the prediction will automatically be changed to
"None". The value of the threshold should be between 0 and 1 inclusive.
Required.
}
}
list_supported_languages
Lists the supported languages for the given project type.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-supported-languages for more information.
list_supported_languages(*, project_kind: str, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Keyword-Only Parameters
Name | Description |
---|---|
project_kind
|
The project kind. Known values are: "Conversation" and "Orchestration". Required. |
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"languageCode": "str", # The language code. This is BCP-47 representation of
a language. For example, "en" for English, "en-gb" for English (UK), "es" for
Spanish etc. Required.
"languageName": "str" # The language name. Required.
}
list_supported_prebuilt_entities
Lists the supported prebuilt entities that can be used while creating composed entities.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/get-supported-prebuilt-entities for more information.
list_supported_prebuilt_entities(*, language: str | None = None, multilingual: bool | None = None, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Keyword-Only Parameters
Name | Description |
---|---|
language
|
The language to get supported prebuilt entities for. Required if multilingual is false. This is BCP-47 representation of a language. For example, use "en" for English, "en-gb" for English (UK), "es" for Spanish etc. Default value is None. Default value: None
|
multilingual
|
Whether to get the support prebuilt entities for multilingual or monolingual projects. If true, the language parameter is ignored. Default value is None. Default value: None
|
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"category": "str", # The prebuilt entity category. Required.
"description": "str", # The description. Required.
"examples": "str" # English examples for the entity. Required.
}
list_trained_models
Lists the trained models belonging to a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/list-trained-models for more information.
list_trained_models(project_name: str, *, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"hasSnapshot": bool, # The flag to indicate if the trained model has a
snapshot ready. Required.
"label": "str", # The trained model label. Required.
"lastTrainedDateTime": "2020-02-20 00:00:00", # The last trained date time
of the model. Required.
"lastTrainingDurationInSeconds": 0, # The duration of the model's last
training request in seconds. Required.
"modelExpirationDate": "2020-02-20", # The model expiration date. Required.
"modelId": "str", # The model ID. Required.
"modelTrainingConfigVersion": "str" # The model training config version.
Required.
}
list_training_config_versions
Lists the support training config version for a given project type.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/list-training-config-versions for more information.
list_training_config_versions(*, project_kind: str, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Keyword-Only Parameters
Name | Description |
---|---|
project_kind
|
The project kind. Known values are: "Conversation" and "Orchestration". Required. |
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"modelExpirationDate": "2020-02-20", # Represents the training config
version expiration date. Required.
"trainingConfigVersion": "str" # Represents the version of the config.
Required.
}
list_training_jobs
Lists the non-expired training jobs created for a project.
See https://learn.microsoft.com/rest/api/language/2023-04-01/conversational-analysis-authoring/list-training-jobs for more information.
list_training_jobs(project_name: str, *, top: int | None = None, skip: int | None = None, **kwargs: Any) -> Iterable[MutableMapping[str, Any]]
Parameters
Name | Description |
---|---|
project_name
Required
|
The name of the project to use. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
top
|
The maximum number of resources to return from the collection. Default value is None. Default value: None
|
skip
|
An offset into the collection of the first resource to be returned. Default value is None. Default value: None
|
Returns
Type | Description |
---|---|
ItemPaged[<xref:JSON>]
|
An iterator like instance of JSON object |
Exceptions
Type | Description |
---|---|
Examples
# response body for status code(s): 200
response == {
"createdDateTime": "2020-02-20 00:00:00", # The creation date time of the
job. Required.
"jobId": "str", # The job ID. Required.
"lastUpdatedDateTime": "2020-02-20 00:00:00", # The last date time the job
was updated. Required.
"result": {
"modelLabel": "str", # Represents trained model label. Required.
"trainingConfigVersion": "str", # Represents training config
version. Required.
"trainingStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"estimatedEndDateTime": "2020-02-20 00:00:00", # Optional.
Represents the estimated end date time for training and evaluation.
"evaluationStatus": {
"percentComplete": 0, # Represents progress percentage.
Required.
"status": "str", # Represents the status of the
sub-operation. Required. Known values are: "notStarted", "running",
"succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"endDateTime": "2020-02-20 00:00:00", # Optional. Represents
the end date time.
"startDateTime": "2020-02-20 00:00:00" # Optional.
Represents the start date time.
},
"trainingMode": "str" # Optional. Represents the mode of the
training operation. Known values are: "advanced" and "standard".
},
"status": "str", # The job status. Required. Known values are: "notStarted",
"running", "succeeded", "failed", "cancelled", "cancelling", and
"partiallyCompleted".
"errors": [
{
"code": "str", # One of a server-defined set of error codes.
Required. Known values are: "InvalidRequest", "InvalidArgument",
"Unauthorized", "Forbidden", "NotFound", "ProjectNotFound",
"OperationNotFound", "AzureCognitiveSearchNotFound",
"AzureCognitiveSearchIndexNotFound", "TooManyRequests",
"AzureCognitiveSearchThrottling",
"AzureCognitiveSearchIndexLimitReached", "InternalServerError",
"ServiceUnavailable", "Timeout", "QuotaExceeded", "Conflict", and
"Warning".
"message": "str", # A human-readable representation of the
error. Required.
"details": [
...
],
"innererror": {
"code": "str", # One of a server-defined set of
error codes. Required. Known values are: "InvalidRequest",
"InvalidParameterValue", "KnowledgeBaseNotFound",
"AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling",
"ExtractionFailure", "InvalidRequestBodyFormat", "EmptyRequest",
"MissingInputDocuments", "InvalidDocument", "ModelVersionIncorrect",
"InvalidDocumentBatch", "UnsupportedLanguageCode", and
"InvalidCountryHint".
"message": "str", # Error message. Required.
"details": {
"str": "str" # Optional. Error details.
},
"innererror": ...,
"target": "str" # Optional. Error target.
},
"target": "str" # Optional. The target of the error.
}
],
"expirationDateTime": "2020-02-20 00:00:00", # Optional. The expiration date
time of the job.
"warnings": [
{
"code": "str", # The warning code. Required.
"message": "str" # The warning message. Required.
}
]
}
send_request
Runs the network request through the client's chained policies.
>>> from azure.core.rest import HttpRequest
>>> request = HttpRequest("GET", "https://www.example.org/")
<HttpRequest [GET], url: 'https://www.example.org/'>
>>> response = client.send_request(request)
<HttpResponse: 200 OK>
For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request
send_request(request: HttpRequest, **kwargs: Any) -> HttpResponse
Parameters
Name | Description |
---|---|
request
Required
|
The network request you want to make. Required. |
Keyword-Only Parameters
Name | Description |
---|---|
stream
|
Whether the response payload will be streamed. Defaults to False. |
Returns
Type | Description |
---|---|
The response of your network call. Does not do error handling on your response. |