Redigeeri

Jagamisviis:


BigInteger.ModPow(BigInteger, BigInteger, BigInteger) Method

Definition

Performs modulus division on a number raised to the power of another number.

public:
 static System::Numerics::BigInteger ModPow(System::Numerics::BigInteger value, System::Numerics::BigInteger exponent, System::Numerics::BigInteger modulus);
public static System.Numerics.BigInteger ModPow (System.Numerics.BigInteger value, System.Numerics.BigInteger exponent, System.Numerics.BigInteger modulus);
static member ModPow : System.Numerics.BigInteger * System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigInteger
Public Shared Function ModPow (value As BigInteger, exponent As BigInteger, modulus As BigInteger) As BigInteger

Parameters

value
BigInteger

The number to raise to the exponent power.

exponent
BigInteger

The exponent to raise value by.

modulus
BigInteger

The number by which to divide value raised to the exponent power.

Returns

The remainder after dividing valueexponent by modulus.

Exceptions

modulus is zero.

exponent is negative.

Examples

The following example provides a simple illustration of calling the ModPow method.

using System;
using System.Numerics;

public class Class1
{
   public static void Main()
   {
      BigInteger number = 10;
      int exponent = 3;
      BigInteger modulus = 30;
      Console.WriteLine("({0}^{1}) Mod {2} = {3}",
                        number, exponent, modulus,
                        BigInteger.ModPow(number, exponent, modulus));
   }
}
// The example displays the following output:
//      (10^3) Mod 30 = 10
open System.Numerics;

let number = 10I;
let exponent = 3;
let modulus = 30I;
printfn $"({number}^{exponent}) Mod {modulus} = {BigInteger.ModPow(number, exponent, modulus)}"
// The example displays the following output:
//      (10^3) Mod 30 = 10
Imports System.Numerics

Module Example
   Public Sub Main()
      Dim number As BigInteger = 10
      Dim exponent As Integer = 3
      Dim modulus As BigInteger = 30
      Console.WriteLine("({0}^{1}) Mod {2} = {3}", _
                        number, exponent, modulus, _
                        BigInteger.ModPow(number, exponent, modulus))
   End Sub   
End Module
' The example displays the following output:
'       (10^3) Mod 30 = 10

Remarks

The ModPow method evaluates the following expression:

(baseValue ^ exponent) Mod modulus

To perform exponentiation on BigInteger values without modulus division, use the Pow method.

Applies to

See also