Partager via


microsoftml.rx_neural_network : Réseau neuronal

Usage

microsoftml.rx_neural_network(formula: str,
    data: [revoscalepy.datasource.RxDataSource.RxDataSource,
    pandas.core.frame.DataFrame], method: ['binary', 'multiClass',
    'regression'] = 'binary', num_hidden_nodes: int = 100,
    num_iterations: int = 100,
    optimizer: [<function adadelta_optimizer at 0x0000007156EAC048>,
    <function sgd_optimizer at 0x0000007156E9FB70>] = {'Name': 'SgdOptimizer',
    'Settings': {}}, net_definition: str = None,
    init_wts_diameter: float = 0.1, max_norm: float = 0,
    acceleration: [<function avx_math at 0x0000007156E9FEA0>,
    <function clr_math at 0x0000007156EAC158>,
    <function gpu_math at 0x0000007156EAC1E0>,
    <function mkl_math at 0x0000007156EAC268>,
    <function sse_math at 0x0000007156EAC2F0>] = {'Name': 'AvxMath',
    'Settings': {}}, mini_batch_size: int = 1, normalize: ['No',
    'Warn', 'Auto', 'Yes'] = 'Auto', ml_transforms: list = None,
    ml_transform_vars: list = None, row_selection: str = None,
    transforms: dict = None, transform_objects: dict = None,
    transform_function: str = None,
    transform_variables: list = None,
    transform_packages: list = None,
    transform_environment: dict = None, blocks_per_read: int = None,
    report_progress: int = None, verbose: int = 1,
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None,
    compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None)

Descriptif

Réseaux neuronaux pour la modélisation de régression et pour la classification binaire et multiclasse.

Détails

Un réseau neuronal est une classe de modèles de prédiction inspirés du cerveau humain. Un réseau neuronal peut être représenté sous la forme d’un graphique orienté pondéré. Chaque nœud du graphique est appelé neurone. Les neurones du graphe sont disposés en couches, où les neurones d’une couche sont connectés par un bord pondéré (les pondérations peuvent être de 0 ou de nombres positifs) aux neurones de la couche suivante. La première couche est appelée couche d’entrée, et chaque neurone de la couche d’entrée correspond à l’une des fonctionnalités. La dernière couche de la fonction est appelée couche de sortie. Ainsi, dans le cas de réseaux neuronaux binaires, il contient deux neurones de sortie, un pour chaque classe, dont les valeurs sont les probabilités d’appartenance à chaque classe. Les couches restantes sont appelées couches masquées. Les valeurs des neurones dans les couches masquées et dans la couche de sortie sont définies en calculant la somme pondérée des valeurs des neurones de la couche précédente et en appliquant une fonction d’activation à cette somme pondérée. Un modèle de réseau neuronal est défini par la structure de son graphe (à savoir le nombre de couches masquées et le nombre de neurones dans chaque couche masquée), le choix de la fonction d’activation et les pondérations sur les bords du graphe. L’algorithme de réseau neuronal tente d’apprendre les pondérations optimales sur les bords en fonction des données d’entraînement.

Bien que les réseaux neuronaux soient largement connus pour une utilisation dans le deep learning et la modélisation de problèmes complexes tels que la reconnaissance d’images, ils sont également facilement adaptés aux problèmes de régression. Toute classe de modèles statistiques peut être considérée comme un réseau neuronal si elles utilisent des pondérations adaptatives et peuvent estimer les fonctions non linéaires de leurs entrées. La régression de réseau neuronal est particulièrement adaptée aux problèmes où un modèle de régression plus traditionnel ne peut pas correspondre à une solution.

Arguments

formula

Formule décrite dans revoscalepy.rx_formula. Termes d’interaction et F() ne sont actuellement pas pris en charge dans microsoftml.

données

Objet source de données ou chaîne de caractères spécifiant un fichier .xdf ou un objet de trame de données.

method

Chaîne de caractères indiquant le type d’arborescence rapide :

  • "binary" pour le réseau neuronal de classification binaire par défaut.

  • "multiClass" pour le réseau neuronal de classification multiclasse.

  • "regression" pour un réseau neuronal de régression.

num_hidden_nodes

Nombre par défaut de nœuds masqués dans le réseau neuronal. La valeur par défaut est 100.

num_iterations

Nombre d’itérations sur le jeu d’entraînement complet. La valeur par défaut est 100.

optimizer

Liste spécifiant l’algorithme ou adaptive l’algorithme d’optimisationsgd. Cette liste peut être créée à l’aide sgd_optimizer ou adadelta_optimizer. La valeur par défaut est sgd.

net_definition

Définition Net# de la structure du réseau neuronal. Pour plus d’informations sur le langage Net#, consultez le Guide de référence

init_wts_diameter

Définit le diamètre des pondérations initiales qui spécifie la plage à partir de laquelle les valeurs sont dessinées pour les pondérations d’apprentissage initiales. Les pondérations sont initialisées de façon aléatoire à partir de cette plage. La valeur par défaut est 0.1.

max_norm

Spécifie une limite supérieure pour limiter la norme du vecteur de poids entrant à chaque unité masquée. Cela peut être très important dans le nombre maximal de réseaux neuronaux ainsi que dans les cas où l’entraînement produit des poids non liés.

Accélération

Spécifie le type d’accélération matérielle à utiliser. Les valeurs possibles sont « sse_math » et « gpu_math ». Pour l’accélération GPU, il est recommandé d’utiliser une miniBatchSize supérieure à une. Si vous souhaitez utiliser l’accélération GPU, des étapes de configuration manuelle supplémentaires sont requises :

  • Téléchargez et installez NVidia CUDA Toolkit 6.5 (CUDA Toolkit).

  • Téléchargez et installez la bibliothèque NVidia cuDNN v2 (bibliothèque cudnn).

  • Recherchez le répertoire libs du package microsoftml en appelant import microsoftml, os, os.path.join(microsoftml.__path__[0], "mxLibs").

  • Copiez cublas64_65.dll, cudart64_65.dll et cusparse64_65.dll à partir du kit de ressources CUDA 6.5 dans le répertoire libs du package microsoftml.

  • Copiez cudnn64_65.dll à partir de la bibliothèque cuDNN v2 dans le répertoire libs du package microsoftml.

mini_batch_size

Définit la taille du mini-lot. Les valeurs recommandées sont comprises entre 1 et 256. Ce paramètre est utilisé uniquement lorsque l’accélération est GPU. La définition de ce paramètre sur une valeur plus élevée améliore la vitesse d’entraînement, mais elle peut affecter négativement la précision. La valeur par défaut est 1.

Normaliser

Spécifie le type de normalisation automatique utilisé :

  • "Warn": si la normalisation est nécessaire, elle est effectuée automatiquement. Il s’agit du choix par défaut.

  • "No": aucune normalisation n’est effectuée.

  • "Yes": la normalisation est effectuée.

  • "Auto": si la normalisation est nécessaire, un message d’avertissement s’affiche, mais la normalisation n’est pas effectuée.

La normalisation met à l’échelle des plages de données disparates à une échelle standard. La mise à l’échelle des caractéristiques garantit que les distances entre les points de données sont proportionnelles et permet à diverses méthodes d’optimisation telles que la descente de dégradé de converger beaucoup plus rapidement. Si la normalisation est effectuée, un MaxMin normaliseur est utilisé. Il normalise les valeurs dans un intervalle [a, b] où -1 <= a <= 0 et 0 <= b <= 1b - a = 1. Ce normaliseur conserve l’éparse en mappant zéro à zéro.

ml_transforms

Spécifie une liste des transformations MicrosoftML à effectuer sur les données avant l’entraînement ou None si aucune transformation n’est à effectuer. Consultez featurize_text, categoricalet , pour categorical_hashconnaître les transformations prises en charge. Ces transformations sont effectuées après les transformations Python spécifiées. La valeur par défaut est None.

ml_transform_vars

Spécifie un vecteur de caractères de noms de variables à utiliser dans ml_transforms ou Aucun si aucun doit être utilisé. La valeur par défaut est None.

row_selection

NON PRIS EN CHARGE. Spécifie les lignes (observations) du jeu de données à utiliser par le modèle avec le nom d’une variable logique à partir du jeu de données (entre guillemets) ou avec une expression logique à l’aide de variables dans le jeu de données. Par exemple:

  • row_selection = "old" utilise uniquement les observations dans lesquelles la valeur de la variable old est True.

  • row_selection = (age > 20) & (age < 65) & (log(income) > 10) utilise uniquement les observations dans lesquelles la valeur de la age variable est comprise entre 20 et 65 et la valeur de la logincome variable est supérieure à 10.

La sélection de lignes est effectuée après le traitement des transformations de données (voir les arguments transforms ou transform_function). Comme pour toutes les expressions, row_selection vous pouvez définir en dehors de l’appel de fonction à l’aide de la expression fonction.

Transforme

NON PRIS EN CHARGE. Expression du formulaire qui représente la première série de transformations de variables. Comme avec toutes les expressions, transforms (ou row_selection) peut être défini en dehors de l’appel de fonction à l’aide de la expression fonction.

transform_objects

NON PRIS EN CHARGE. Liste nommée qui contient des objets qui peuvent être référencés par transforms, transform_functionet row_selection.

transform_function

Fonction de transformation de variable.

transform_variables

Vecteur de caractères des variables de jeu de données d’entrée nécessaires pour la fonction de transformation.

transform_packages

NON PRIS EN CHARGE. Vecteur de caractères spécifiant des packages Python supplémentaires (en dehors de ceux spécifiés dans RxOptions.get_option("transform_packages")) à rendre disponibles et préchargés pour une utilisation dans les fonctions de transformation de variable. Par exemple, ceux définis explicitement dans les fonctions revoscalepy via leurs arguments et transform_function leurs transforms arguments ou ceux définis implicitement par leur ou row_selection leurs formula arguments. L’argument transform_packages peut également être None, ce qui indique qu’aucun package en dehors RxOptions.get_option("transform_packages") n’est préchargé.

transform_environment

NON PRIS EN CHARGE. Environnement défini par l’utilisateur pour servir de parent à tous les environnements développés en interne et utilisés pour la transformation des données variables. Si transform_environment = None, un nouvel environnement de « hachage » avec revoscalepy.baseenvis parent utilisé à la place.

blocks_per_read

Spécifie le nombre de blocs à lire pour chaque bloc de données lu à partir de la source de données.

report_progress

Valeur entière qui spécifie le niveau de création de rapports sur la progression du traitement des lignes :

  • 0: aucune progression n’est signalée.

  • 1: le nombre de lignes traitées est imprimé et mis à jour.

  • 2: les lignes traitées et le minutage sont signalés.

  • 3: lignes traitées et toutes les minutages sont signalées.

verbose

Valeur entière qui spécifie la quantité de sortie souhaitée. Si 0, aucune sortie détaillée n’est imprimée pendant les calculs. Valeurs entières allant de 1 à 4 fournir des quantités croissantes d’informations.

compute_context

Définit le contexte dans lequel les calculs sont exécutés, spécifiés avec une révoscalepy valide. RxComputeContext. Actuellement local et revoscalepy. Les contextes de calcul RxInSqlServer sont pris en charge.

ensemble

Paramètres de contrôle pour l’ensembling.

Retours

Objet NeuralNetwork avec le modèle entraîné.

Note

Cet algorithme est monothread et ne tente pas de charger l’ensemble du jeu de données en mémoire.

Voir aussi

adadelta_optimizer, sgd_optimizer, avx_math, clr_mathgpu_math, mkl_math, sse_math, rx_predict.

References

Wikipédia : Réseau neuronal artificiel

Exemple de classification binaire

'''
Binary Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

infert = get_dataset("infert")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

infertdf = infert.as_df()
infertdf["isCase"] = infertdf.case == 1
data_train, data_test, y_train, y_test = train_test_split(infertdf, infertdf.isCase)

forest_model = rx_neural_network(
    formula=" isCase ~ age + parity + education + spontaneous + induced ",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(forest_model, data=data_test,
                     extra_vars_to_write=["isCase", "Score"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Sortie:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [5];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] sigmoid { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 5
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 701 Weights...
Estimated Pre-training MeanError = 0.742343
Iter:1/100, MeanErr=0.680245(-8.37%), 119.87M WeightUpdates/sec
Iter:2/100, MeanErr=0.637843(-6.23%), 122.52M WeightUpdates/sec
Iter:3/100, MeanErr=0.635404(-0.38%), 122.24M WeightUpdates/sec
Iter:4/100, MeanErr=0.634980(-0.07%), 73.36M WeightUpdates/sec
Iter:5/100, MeanErr=0.635287(0.05%), 128.26M WeightUpdates/sec
Iter:6/100, MeanErr=0.634572(-0.11%), 131.05M WeightUpdates/sec
Iter:7/100, MeanErr=0.634827(0.04%), 124.27M WeightUpdates/sec
Iter:8/100, MeanErr=0.635359(0.08%), 123.69M WeightUpdates/sec
Iter:9/100, MeanErr=0.635244(-0.02%), 119.35M WeightUpdates/sec
Iter:10/100, MeanErr=0.634712(-0.08%), 127.80M WeightUpdates/sec
Iter:11/100, MeanErr=0.635105(0.06%), 122.69M WeightUpdates/sec
Iter:12/100, MeanErr=0.635226(0.02%), 98.61M WeightUpdates/sec
Iter:13/100, MeanErr=0.634977(-0.04%), 127.88M WeightUpdates/sec
Iter:14/100, MeanErr=0.634347(-0.10%), 123.25M WeightUpdates/sec
Iter:15/100, MeanErr=0.634891(0.09%), 124.27M WeightUpdates/sec
Iter:16/100, MeanErr=0.635116(0.04%), 123.06M WeightUpdates/sec
Iter:17/100, MeanErr=0.633770(-0.21%), 122.05M WeightUpdates/sec
Iter:18/100, MeanErr=0.634992(0.19%), 128.79M WeightUpdates/sec
Iter:19/100, MeanErr=0.634385(-0.10%), 122.95M WeightUpdates/sec
Iter:20/100, MeanErr=0.634752(0.06%), 127.14M WeightUpdates/sec
Iter:21/100, MeanErr=0.635043(0.05%), 123.44M WeightUpdates/sec
Iter:22/100, MeanErr=0.634845(-0.03%), 121.81M WeightUpdates/sec
Iter:23/100, MeanErr=0.634850(0.00%), 125.11M WeightUpdates/sec
Iter:24/100, MeanErr=0.634617(-0.04%), 122.18M WeightUpdates/sec
Iter:25/100, MeanErr=0.634675(0.01%), 125.69M WeightUpdates/sec
Iter:26/100, MeanErr=0.634911(0.04%), 122.44M WeightUpdates/sec
Iter:27/100, MeanErr=0.634311(-0.09%), 121.90M WeightUpdates/sec
Iter:28/100, MeanErr=0.634798(0.08%), 123.54M WeightUpdates/sec
Iter:29/100, MeanErr=0.634674(-0.02%), 127.53M WeightUpdates/sec
Iter:30/100, MeanErr=0.634546(-0.02%), 100.96M WeightUpdates/sec
Iter:31/100, MeanErr=0.634859(0.05%), 124.40M WeightUpdates/sec
Iter:32/100, MeanErr=0.634747(-0.02%), 128.21M WeightUpdates/sec
Iter:33/100, MeanErr=0.634842(0.02%), 125.82M WeightUpdates/sec
Iter:34/100, MeanErr=0.634703(-0.02%), 77.48M WeightUpdates/sec
Iter:35/100, MeanErr=0.634804(0.02%), 122.21M WeightUpdates/sec
Iter:36/100, MeanErr=0.634690(-0.02%), 112.48M WeightUpdates/sec
Iter:37/100, MeanErr=0.634654(-0.01%), 119.18M WeightUpdates/sec
Iter:38/100, MeanErr=0.634885(0.04%), 137.19M WeightUpdates/sec
Iter:39/100, MeanErr=0.634723(-0.03%), 113.80M WeightUpdates/sec
Iter:40/100, MeanErr=0.634714(0.00%), 127.50M WeightUpdates/sec
Iter:41/100, MeanErr=0.634794(0.01%), 129.54M WeightUpdates/sec
Iter:42/100, MeanErr=0.633835(-0.15%), 133.05M WeightUpdates/sec
Iter:43/100, MeanErr=0.634401(0.09%), 128.95M WeightUpdates/sec
Iter:44/100, MeanErr=0.634575(0.03%), 123.42M WeightUpdates/sec
Iter:45/100, MeanErr=0.634673(0.02%), 123.78M WeightUpdates/sec
Iter:46/100, MeanErr=0.634692(0.00%), 119.04M WeightUpdates/sec
Iter:47/100, MeanErr=0.634476(-0.03%), 122.95M WeightUpdates/sec
Iter:48/100, MeanErr=0.634583(0.02%), 97.87M WeightUpdates/sec
Iter:49/100, MeanErr=0.634706(0.02%), 121.41M WeightUpdates/sec
Iter:50/100, MeanErr=0.634564(-0.02%), 120.58M WeightUpdates/sec
Iter:51/100, MeanErr=0.634118(-0.07%), 120.17M WeightUpdates/sec
Iter:52/100, MeanErr=0.634699(0.09%), 127.27M WeightUpdates/sec
Iter:53/100, MeanErr=0.634123(-0.09%), 110.51M WeightUpdates/sec
Iter:54/100, MeanErr=0.634390(0.04%), 123.74M WeightUpdates/sec
Iter:55/100, MeanErr=0.634461(0.01%), 113.66M WeightUpdates/sec
Iter:56/100, MeanErr=0.634415(-0.01%), 118.61M WeightUpdates/sec
Iter:57/100, MeanErr=0.634453(0.01%), 114.99M WeightUpdates/sec
Iter:58/100, MeanErr=0.634478(0.00%), 104.53M WeightUpdates/sec
Iter:59/100, MeanErr=0.634010(-0.07%), 124.62M WeightUpdates/sec
Iter:60/100, MeanErr=0.633901(-0.02%), 118.93M WeightUpdates/sec
Iter:61/100, MeanErr=0.634088(0.03%), 40.46M WeightUpdates/sec
Iter:62/100, MeanErr=0.634046(-0.01%), 94.65M WeightUpdates/sec
Iter:63/100, MeanErr=0.634233(0.03%), 27.18M WeightUpdates/sec
Iter:64/100, MeanErr=0.634596(0.06%), 123.94M WeightUpdates/sec
Iter:65/100, MeanErr=0.634185(-0.06%), 125.01M WeightUpdates/sec
Iter:66/100, MeanErr=0.634469(0.04%), 119.41M WeightUpdates/sec
Iter:67/100, MeanErr=0.634333(-0.02%), 124.11M WeightUpdates/sec
Iter:68/100, MeanErr=0.634203(-0.02%), 112.68M WeightUpdates/sec
Iter:69/100, MeanErr=0.633854(-0.05%), 118.62M WeightUpdates/sec
Iter:70/100, MeanErr=0.634319(0.07%), 123.59M WeightUpdates/sec
Iter:71/100, MeanErr=0.634423(0.02%), 122.51M WeightUpdates/sec
Iter:72/100, MeanErr=0.634388(-0.01%), 126.15M WeightUpdates/sec
Iter:73/100, MeanErr=0.634230(-0.02%), 126.51M WeightUpdates/sec
Iter:74/100, MeanErr=0.634011(-0.03%), 128.32M WeightUpdates/sec
Iter:75/100, MeanErr=0.634294(0.04%), 127.48M WeightUpdates/sec
Iter:76/100, MeanErr=0.634372(0.01%), 123.51M WeightUpdates/sec
Iter:77/100, MeanErr=0.632020(-0.37%), 122.12M WeightUpdates/sec
Iter:78/100, MeanErr=0.633770(0.28%), 119.55M WeightUpdates/sec
Iter:79/100, MeanErr=0.633504(-0.04%), 124.21M WeightUpdates/sec
Iter:80/100, MeanErr=0.634154(0.10%), 125.94M WeightUpdates/sec
Iter:81/100, MeanErr=0.633491(-0.10%), 120.83M WeightUpdates/sec
Iter:82/100, MeanErr=0.634212(0.11%), 128.60M WeightUpdates/sec
Iter:83/100, MeanErr=0.634138(-0.01%), 73.58M WeightUpdates/sec
Iter:84/100, MeanErr=0.634244(0.02%), 124.08M WeightUpdates/sec
Iter:85/100, MeanErr=0.634065(-0.03%), 96.43M WeightUpdates/sec
Iter:86/100, MeanErr=0.634174(0.02%), 124.28M WeightUpdates/sec
Iter:87/100, MeanErr=0.633966(-0.03%), 125.24M WeightUpdates/sec
Iter:88/100, MeanErr=0.633989(0.00%), 130.31M WeightUpdates/sec
Iter:89/100, MeanErr=0.633767(-0.04%), 115.73M WeightUpdates/sec
Iter:90/100, MeanErr=0.633831(0.01%), 122.81M WeightUpdates/sec
Iter:91/100, MeanErr=0.633219(-0.10%), 114.91M WeightUpdates/sec
Iter:92/100, MeanErr=0.633589(0.06%), 93.29M WeightUpdates/sec
Iter:93/100, MeanErr=0.634086(0.08%), 123.31M WeightUpdates/sec
Iter:94/100, MeanErr=0.634075(0.00%), 120.99M WeightUpdates/sec
Iter:95/100, MeanErr=0.634071(0.00%), 122.49M WeightUpdates/sec
Iter:96/100, MeanErr=0.633523(-0.09%), 116.48M WeightUpdates/sec
Iter:97/100, MeanErr=0.634103(0.09%), 128.85M WeightUpdates/sec
Iter:98/100, MeanErr=0.633836(-0.04%), 123.87M WeightUpdates/sec
Iter:99/100, MeanErr=0.633772(-0.01%), 128.17M WeightUpdates/sec
Iter:100/100, MeanErr=0.633684(-0.01%), 123.65M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.631268
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2454094
Elapsed time: 00:00:00.0082325
Beginning processing data.
Rows Read: 62, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0297006
Finished writing 62 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds 
  isCase PredictedLabel     Score  Probability
0   True          False -0.689636     0.334114
1   True          False -0.710219     0.329551
2   True          False -0.712912     0.328956
3  False          False -0.700765     0.331643
4   True          False -0.689783     0.334081

Exemple de classification multiclasse

'''
MultiClass Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

iris = get_dataset("iris")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

irisdf = iris.as_df()
irisdf["Species"] = irisdf["Species"].astype("category")
data_train, data_test, y_train, y_test = train_test_split(irisdf, irisdf.Species)

model = rx_neural_network(
    formula="  Species ~ Sepal_Length + Sepal_Width + Petal_Length + Petal_Width ",
    method="multiClass",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
                     extra_vars_to_write=["Species", "Score"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Sortie:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 112, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [4];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [3] softmax { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 4
Output count: 3
Output Function: SoftMax
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 803 Weights...
Estimated Pre-training MeanError = 1.949606
Iter:1/100, MeanErr=1.937924(-0.60%), 98.43M WeightUpdates/sec
Iter:2/100, MeanErr=1.921153(-0.87%), 96.21M WeightUpdates/sec
Iter:3/100, MeanErr=1.920000(-0.06%), 95.55M WeightUpdates/sec
Iter:4/100, MeanErr=1.917267(-0.14%), 81.25M WeightUpdates/sec
Iter:5/100, MeanErr=1.917611(0.02%), 102.44M WeightUpdates/sec
Iter:6/100, MeanErr=1.918476(0.05%), 106.16M WeightUpdates/sec
Iter:7/100, MeanErr=1.916096(-0.12%), 97.85M WeightUpdates/sec
Iter:8/100, MeanErr=1.919486(0.18%), 77.99M WeightUpdates/sec
Iter:9/100, MeanErr=1.916452(-0.16%), 95.67M WeightUpdates/sec
Iter:10/100, MeanErr=1.916024(-0.02%), 102.06M WeightUpdates/sec
Iter:11/100, MeanErr=1.917155(0.06%), 99.21M WeightUpdates/sec
Iter:12/100, MeanErr=1.918543(0.07%), 99.25M WeightUpdates/sec
Iter:13/100, MeanErr=1.919120(0.03%), 85.38M WeightUpdates/sec
Iter:14/100, MeanErr=1.917713(-0.07%), 103.00M WeightUpdates/sec
Iter:15/100, MeanErr=1.917675(0.00%), 98.70M WeightUpdates/sec
Iter:16/100, MeanErr=1.917982(0.02%), 99.10M WeightUpdates/sec
Iter:17/100, MeanErr=1.916254(-0.09%), 103.41M WeightUpdates/sec
Iter:18/100, MeanErr=1.915691(-0.03%), 102.00M WeightUpdates/sec
Iter:19/100, MeanErr=1.914844(-0.04%), 86.64M WeightUpdates/sec
Iter:20/100, MeanErr=1.919268(0.23%), 94.68M WeightUpdates/sec
Iter:21/100, MeanErr=1.918748(-0.03%), 108.11M WeightUpdates/sec
Iter:22/100, MeanErr=1.917997(-0.04%), 96.33M WeightUpdates/sec
Iter:23/100, MeanErr=1.914987(-0.16%), 82.84M WeightUpdates/sec
Iter:24/100, MeanErr=1.916550(0.08%), 99.70M WeightUpdates/sec
Iter:25/100, MeanErr=1.915401(-0.06%), 96.69M WeightUpdates/sec
Iter:26/100, MeanErr=1.916092(0.04%), 101.62M WeightUpdates/sec
Iter:27/100, MeanErr=1.916381(0.02%), 98.81M WeightUpdates/sec
Iter:28/100, MeanErr=1.917414(0.05%), 102.29M WeightUpdates/sec
Iter:29/100, MeanErr=1.917316(-0.01%), 100.17M WeightUpdates/sec
Iter:30/100, MeanErr=1.916507(-0.04%), 82.09M WeightUpdates/sec
Iter:31/100, MeanErr=1.915786(-0.04%), 98.33M WeightUpdates/sec
Iter:32/100, MeanErr=1.917581(0.09%), 101.70M WeightUpdates/sec
Iter:33/100, MeanErr=1.913680(-0.20%), 79.94M WeightUpdates/sec
Iter:34/100, MeanErr=1.917264(0.19%), 102.54M WeightUpdates/sec
Iter:35/100, MeanErr=1.917377(0.01%), 100.67M WeightUpdates/sec
Iter:36/100, MeanErr=1.912060(-0.28%), 70.37M WeightUpdates/sec
Iter:37/100, MeanErr=1.917009(0.26%), 80.80M WeightUpdates/sec
Iter:38/100, MeanErr=1.916216(-0.04%), 94.56M WeightUpdates/sec
Iter:39/100, MeanErr=1.916362(0.01%), 28.22M WeightUpdates/sec
Iter:40/100, MeanErr=1.910658(-0.30%), 100.87M WeightUpdates/sec
Iter:41/100, MeanErr=1.916375(0.30%), 85.99M WeightUpdates/sec
Iter:42/100, MeanErr=1.916257(-0.01%), 102.06M WeightUpdates/sec
Iter:43/100, MeanErr=1.914505(-0.09%), 99.86M WeightUpdates/sec
Iter:44/100, MeanErr=1.914638(0.01%), 103.11M WeightUpdates/sec
Iter:45/100, MeanErr=1.915141(0.03%), 107.62M WeightUpdates/sec
Iter:46/100, MeanErr=1.915119(0.00%), 99.65M WeightUpdates/sec
Iter:47/100, MeanErr=1.915379(0.01%), 107.03M WeightUpdates/sec
Iter:48/100, MeanErr=1.912565(-0.15%), 104.78M WeightUpdates/sec
Iter:49/100, MeanErr=1.915466(0.15%), 110.43M WeightUpdates/sec
Iter:50/100, MeanErr=1.914038(-0.07%), 98.44M WeightUpdates/sec
Iter:51/100, MeanErr=1.915015(0.05%), 96.28M WeightUpdates/sec
Iter:52/100, MeanErr=1.913771(-0.06%), 89.27M WeightUpdates/sec
Iter:53/100, MeanErr=1.911621(-0.11%), 72.67M WeightUpdates/sec
Iter:54/100, MeanErr=1.914969(0.18%), 111.17M WeightUpdates/sec
Iter:55/100, MeanErr=1.913894(-0.06%), 98.68M WeightUpdates/sec
Iter:56/100, MeanErr=1.914871(0.05%), 95.41M WeightUpdates/sec
Iter:57/100, MeanErr=1.912898(-0.10%), 80.72M WeightUpdates/sec
Iter:58/100, MeanErr=1.913334(0.02%), 103.71M WeightUpdates/sec
Iter:59/100, MeanErr=1.913362(0.00%), 99.57M WeightUpdates/sec
Iter:60/100, MeanErr=1.913915(0.03%), 106.21M WeightUpdates/sec
Iter:61/100, MeanErr=1.913310(-0.03%), 112.27M WeightUpdates/sec
Iter:62/100, MeanErr=1.913395(0.00%), 50.86M WeightUpdates/sec
Iter:63/100, MeanErr=1.912814(-0.03%), 58.91M WeightUpdates/sec
Iter:64/100, MeanErr=1.911468(-0.07%), 72.06M WeightUpdates/sec
Iter:65/100, MeanErr=1.912313(0.04%), 86.34M WeightUpdates/sec
Iter:66/100, MeanErr=1.913320(0.05%), 114.39M WeightUpdates/sec
Iter:67/100, MeanErr=1.912914(-0.02%), 105.97M WeightUpdates/sec
Iter:68/100, MeanErr=1.909881(-0.16%), 105.73M WeightUpdates/sec
Iter:69/100, MeanErr=1.911649(0.09%), 105.23M WeightUpdates/sec
Iter:70/100, MeanErr=1.911192(-0.02%), 110.24M WeightUpdates/sec
Iter:71/100, MeanErr=1.912480(0.07%), 106.86M WeightUpdates/sec
Iter:72/100, MeanErr=1.909881(-0.14%), 97.28M WeightUpdates/sec
Iter:73/100, MeanErr=1.911678(0.09%), 109.57M WeightUpdates/sec
Iter:74/100, MeanErr=1.911137(-0.03%), 91.01M WeightUpdates/sec
Iter:75/100, MeanErr=1.910706(-0.02%), 99.41M WeightUpdates/sec
Iter:76/100, MeanErr=1.910869(0.01%), 84.18M WeightUpdates/sec
Iter:77/100, MeanErr=1.911643(0.04%), 105.07M WeightUpdates/sec
Iter:78/100, MeanErr=1.911438(-0.01%), 110.12M WeightUpdates/sec
Iter:79/100, MeanErr=1.909590(-0.10%), 84.16M WeightUpdates/sec
Iter:80/100, MeanErr=1.911181(0.08%), 92.30M WeightUpdates/sec
Iter:81/100, MeanErr=1.910534(-0.03%), 110.60M WeightUpdates/sec
Iter:82/100, MeanErr=1.909340(-0.06%), 54.07M WeightUpdates/sec
Iter:83/100, MeanErr=1.908275(-0.06%), 104.08M WeightUpdates/sec
Iter:84/100, MeanErr=1.910364(0.11%), 107.19M WeightUpdates/sec
Iter:85/100, MeanErr=1.910286(0.00%), 102.55M WeightUpdates/sec
Iter:86/100, MeanErr=1.909155(-0.06%), 79.72M WeightUpdates/sec
Iter:87/100, MeanErr=1.909384(0.01%), 102.37M WeightUpdates/sec
Iter:88/100, MeanErr=1.907751(-0.09%), 105.48M WeightUpdates/sec
Iter:89/100, MeanErr=1.910164(0.13%), 102.53M WeightUpdates/sec
Iter:90/100, MeanErr=1.907935(-0.12%), 105.03M WeightUpdates/sec
Iter:91/100, MeanErr=1.909510(0.08%), 99.97M WeightUpdates/sec
Iter:92/100, MeanErr=1.907405(-0.11%), 100.03M WeightUpdates/sec
Iter:93/100, MeanErr=1.905757(-0.09%), 113.21M WeightUpdates/sec
Iter:94/100, MeanErr=1.909167(0.18%), 107.86M WeightUpdates/sec
Iter:95/100, MeanErr=1.907593(-0.08%), 106.09M WeightUpdates/sec
Iter:96/100, MeanErr=1.908358(0.04%), 111.25M WeightUpdates/sec
Iter:97/100, MeanErr=1.906484(-0.10%), 95.81M WeightUpdates/sec
Iter:98/100, MeanErr=1.908239(0.09%), 105.89M WeightUpdates/sec
Iter:99/100, MeanErr=1.908508(0.01%), 103.05M WeightUpdates/sec
Iter:100/100, MeanErr=1.904747(-0.20%), 106.81M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 1.896338
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1620840
Elapsed time: 00:00:00.0096627
Beginning processing data.
Rows Read: 38, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0312987
Finished writing 38 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 seconds 
      Species   Score.0   Score.1   Score.2
0  versicolor  0.350161  0.339557  0.310282
1      setosa  0.358506  0.336593  0.304901
2   virginica  0.346957  0.340573  0.312470
3   virginica  0.346685  0.340748  0.312567
4   virginica  0.348469  0.340113  0.311417

Exemple de régression

'''
Regression.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset

attitude = get_dataset("attitude")

import sklearn
if sklearn.__version__ < "0.18":
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

attitudedf = attitude.as_df()
data_train, data_test = train_test_split(attitudedf)

model = rx_neural_network(
    formula="rating ~ complaints + privileges + learning + raises + critical + advance",
    method="regression",
    data=data_train)
    
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
                     extra_vars_to_write=["rating"])
                     
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))

Sortie:

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math

***** Net definition *****
  input Data [6];
  hidden H [100] sigmoid { // Depth 1
    from Data all;
  }
  output Result [1] linear { // Depth 0
    from H all;
  }
***** End net definition *****
Input count: 6
Output count: 1
Output Function: Linear
Loss Function: SquaredLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 801 Weights...
Estimated Pre-training MeanError = 4458.793673
Iter:1/100, MeanErr=1624.747024(-63.56%), 27.30M WeightUpdates/sec
Iter:2/100, MeanErr=139.267390(-91.43%), 30.50M WeightUpdates/sec
Iter:3/100, MeanErr=116.382316(-16.43%), 29.16M WeightUpdates/sec
Iter:4/100, MeanErr=114.947244(-1.23%), 32.06M WeightUpdates/sec
Iter:5/100, MeanErr=112.886818(-1.79%), 32.96M WeightUpdates/sec
Iter:6/100, MeanErr=112.406547(-0.43%), 30.29M WeightUpdates/sec
Iter:7/100, MeanErr=110.502757(-1.69%), 30.92M WeightUpdates/sec
Iter:8/100, MeanErr=111.499645(0.90%), 31.20M WeightUpdates/sec
Iter:9/100, MeanErr=111.895816(0.36%), 32.46M WeightUpdates/sec
Iter:10/100, MeanErr=110.171443(-1.54%), 34.61M WeightUpdates/sec
Iter:11/100, MeanErr=106.975524(-2.90%), 22.14M WeightUpdates/sec
Iter:12/100, MeanErr=107.708220(0.68%), 7.73M WeightUpdates/sec
Iter:13/100, MeanErr=105.345097(-2.19%), 28.99M WeightUpdates/sec
Iter:14/100, MeanErr=109.937833(4.36%), 31.04M WeightUpdates/sec
Iter:15/100, MeanErr=106.672340(-2.97%), 30.04M WeightUpdates/sec
Iter:16/100, MeanErr=108.474555(1.69%), 32.41M WeightUpdates/sec
Iter:17/100, MeanErr=109.449054(0.90%), 31.60M WeightUpdates/sec
Iter:18/100, MeanErr=105.911830(-3.23%), 34.05M WeightUpdates/sec
Iter:19/100, MeanErr=106.045172(0.13%), 33.80M WeightUpdates/sec
Iter:20/100, MeanErr=108.360427(2.18%), 33.60M WeightUpdates/sec
Iter:21/100, MeanErr=106.506436(-1.71%), 33.77M WeightUpdates/sec
Iter:22/100, MeanErr=99.167335(-6.89%), 32.26M WeightUpdates/sec
Iter:23/100, MeanErr=108.115797(9.02%), 25.86M WeightUpdates/sec
Iter:24/100, MeanErr=106.292283(-1.69%), 31.03M WeightUpdates/sec
Iter:25/100, MeanErr=99.397875(-6.49%), 31.33M WeightUpdates/sec
Iter:26/100, MeanErr=104.805299(5.44%), 31.57M WeightUpdates/sec
Iter:27/100, MeanErr=101.385085(-3.26%), 22.92M WeightUpdates/sec
Iter:28/100, MeanErr=100.064656(-1.30%), 35.01M WeightUpdates/sec
Iter:29/100, MeanErr=100.519013(0.45%), 32.74M WeightUpdates/sec
Iter:30/100, MeanErr=99.273143(-1.24%), 35.12M WeightUpdates/sec
Iter:31/100, MeanErr=100.465649(1.20%), 33.68M WeightUpdates/sec
Iter:32/100, MeanErr=102.402320(1.93%), 33.79M WeightUpdates/sec
Iter:33/100, MeanErr=97.517196(-4.77%), 32.32M WeightUpdates/sec
Iter:34/100, MeanErr=102.597511(5.21%), 32.46M WeightUpdates/sec
Iter:35/100, MeanErr=96.187788(-6.25%), 32.32M WeightUpdates/sec
Iter:36/100, MeanErr=101.533507(5.56%), 21.44M WeightUpdates/sec
Iter:37/100, MeanErr=99.339624(-2.16%), 21.53M WeightUpdates/sec
Iter:38/100, MeanErr=98.049306(-1.30%), 15.27M WeightUpdates/sec
Iter:39/100, MeanErr=97.508282(-0.55%), 23.21M WeightUpdates/sec
Iter:40/100, MeanErr=99.894288(2.45%), 27.94M WeightUpdates/sec
Iter:41/100, MeanErr=95.190566(-4.71%), 32.47M WeightUpdates/sec
Iter:42/100, MeanErr=91.234977(-4.16%), 31.29M WeightUpdates/sec
Iter:43/100, MeanErr=98.824414(8.32%), 32.35M WeightUpdates/sec
Iter:44/100, MeanErr=96.759533(-2.09%), 22.37M WeightUpdates/sec
Iter:45/100, MeanErr=95.275106(-1.53%), 32.09M WeightUpdates/sec
Iter:46/100, MeanErr=95.749031(0.50%), 26.49M WeightUpdates/sec
Iter:47/100, MeanErr=96.267879(0.54%), 31.81M WeightUpdates/sec
Iter:48/100, MeanErr=97.383752(1.16%), 31.01M WeightUpdates/sec
Iter:49/100, MeanErr=96.605199(-0.80%), 32.05M WeightUpdates/sec
Iter:50/100, MeanErr=96.927400(0.33%), 32.42M WeightUpdates/sec
Iter:51/100, MeanErr=96.288491(-0.66%), 28.89M WeightUpdates/sec
Iter:52/100, MeanErr=92.751171(-3.67%), 33.68M WeightUpdates/sec
Iter:53/100, MeanErr=88.655001(-4.42%), 34.53M WeightUpdates/sec
Iter:54/100, MeanErr=90.923513(2.56%), 32.00M WeightUpdates/sec
Iter:55/100, MeanErr=91.627261(0.77%), 25.74M WeightUpdates/sec
Iter:56/100, MeanErr=91.132907(-0.54%), 30.00M WeightUpdates/sec
Iter:57/100, MeanErr=95.294092(4.57%), 33.13M WeightUpdates/sec
Iter:58/100, MeanErr=90.219024(-5.33%), 31.70M WeightUpdates/sec
Iter:59/100, MeanErr=92.727605(2.78%), 30.71M WeightUpdates/sec
Iter:60/100, MeanErr=86.910488(-6.27%), 33.07M WeightUpdates/sec
Iter:61/100, MeanErr=92.350984(6.26%), 32.46M WeightUpdates/sec
Iter:62/100, MeanErr=93.208298(0.93%), 31.08M WeightUpdates/sec
Iter:63/100, MeanErr=90.784723(-2.60%), 21.19M WeightUpdates/sec
Iter:64/100, MeanErr=88.685225(-2.31%), 33.17M WeightUpdates/sec
Iter:65/100, MeanErr=91.668555(3.36%), 30.65M WeightUpdates/sec
Iter:66/100, MeanErr=82.607568(-9.88%), 29.72M WeightUpdates/sec
Iter:67/100, MeanErr=88.787842(7.48%), 32.98M WeightUpdates/sec
Iter:68/100, MeanErr=88.793186(0.01%), 34.67M WeightUpdates/sec
Iter:69/100, MeanErr=88.918795(0.14%), 14.09M WeightUpdates/sec
Iter:70/100, MeanErr=87.121434(-2.02%), 33.02M WeightUpdates/sec
Iter:71/100, MeanErr=86.865602(-0.29%), 34.87M WeightUpdates/sec
Iter:72/100, MeanErr=87.261979(0.46%), 32.34M WeightUpdates/sec
Iter:73/100, MeanErr=87.812460(0.63%), 31.35M WeightUpdates/sec
Iter:74/100, MeanErr=87.818462(0.01%), 32.54M WeightUpdates/sec
Iter:75/100, MeanErr=87.085672(-0.83%), 34.80M WeightUpdates/sec
Iter:76/100, MeanErr=85.773668(-1.51%), 35.39M WeightUpdates/sec
Iter:77/100, MeanErr=85.338703(-0.51%), 34.59M WeightUpdates/sec
Iter:78/100, MeanErr=79.370105(-6.99%), 30.14M WeightUpdates/sec
Iter:79/100, MeanErr=83.026209(4.61%), 32.32M WeightUpdates/sec
Iter:80/100, MeanErr=89.776417(8.13%), 33.14M WeightUpdates/sec
Iter:81/100, MeanErr=85.447100(-4.82%), 32.32M WeightUpdates/sec
Iter:82/100, MeanErr=83.991969(-1.70%), 22.12M WeightUpdates/sec
Iter:83/100, MeanErr=85.065064(1.28%), 30.41M WeightUpdates/sec
Iter:84/100, MeanErr=83.762008(-1.53%), 31.29M WeightUpdates/sec
Iter:85/100, MeanErr=84.217726(0.54%), 34.92M WeightUpdates/sec
Iter:86/100, MeanErr=82.395181(-2.16%), 34.26M WeightUpdates/sec
Iter:87/100, MeanErr=82.979145(0.71%), 22.87M WeightUpdates/sec
Iter:88/100, MeanErr=83.656685(0.82%), 28.51M WeightUpdates/sec
Iter:89/100, MeanErr=81.132468(-3.02%), 32.43M WeightUpdates/sec
Iter:90/100, MeanErr=81.311106(0.22%), 30.91M WeightUpdates/sec
Iter:91/100, MeanErr=81.953897(0.79%), 31.98M WeightUpdates/sec
Iter:92/100, MeanErr=79.018074(-3.58%), 33.13M WeightUpdates/sec
Iter:93/100, MeanErr=78.220412(-1.01%), 31.47M WeightUpdates/sec
Iter:94/100, MeanErr=80.833884(3.34%), 25.16M WeightUpdates/sec
Iter:95/100, MeanErr=81.550135(0.89%), 32.64M WeightUpdates/sec
Iter:96/100, MeanErr=77.785628(-4.62%), 32.54M WeightUpdates/sec
Iter:97/100, MeanErr=76.438158(-1.73%), 34.34M WeightUpdates/sec
Iter:98/100, MeanErr=79.471621(3.97%), 33.12M WeightUpdates/sec
Iter:99/100, MeanErr=76.038475(-4.32%), 33.01M WeightUpdates/sec
Iter:100/100, MeanErr=75.349164(-0.91%), 32.68M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 75.768932
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1178557
Elapsed time: 00:00:00.0088299
Beginning processing data.
Rows Read: 8, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0293893
Finished writing 8 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds 
   rating      Score
0    82.0  70.120613
1    64.0  66.344688
2    68.0  68.862373
3    58.0  68.241341
4    63.0  67.196869

Optimiseurs

mathématiques