AutoMLExperiment Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
The class for AutoML experiment
public class AutoMLExperiment
type AutoMLExperiment = class
Public Class AutoMLExperiment
- Inheritance
-
AutoMLExperiment
Examples
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.ML.Data;
namespace Microsoft.ML.AutoML.Samples
{
public static class AutoMLExperiment
{
public static async Task RunAsync()
{
var seed = 0;
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var context = new MLContext(seed);
// Create a list of training data points and convert it to IDataView.
var data = GenerateRandomBinaryClassificationDataPoints(100, seed);
var dataView = context.Data.LoadFromEnumerable(data);
var trainTestSplit = context.Data.TrainTestSplit(dataView);
// Define the sweepable pipeline using predefined binary trainers and search space.
var pipeline = context.Auto().BinaryClassification(labelColumnName: "Label", featureColumnName: "Features");
// Create an AutoML experiment
var experiment = context.Auto().CreateExperiment();
// Redirect AutoML log to console
context.Log += (object o, LoggingEventArgs e) =>
{
if (e.Source == nameof(AutoMLExperiment) && e.Kind > Runtime.ChannelMessageKind.Trace)
{
Console.WriteLine(e.RawMessage);
}
};
// Config experiment to optimize "Accuracy" metric on given dataset.
// This experiment will run hyper-parameter optimization on given pipeline
experiment.SetPipeline(pipeline)
.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
.SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, "Label")
.SetMaxModelToExplore(100); // explore 100 trials
// start automl experiment
var result = await experiment.RunAsync();
// Expected output samples during training:
// Update Running Trial - Id: 0
// Update Completed Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary - Duration: 595 - Peak CPU: 0.00 % -Peak Memory in MB: 35.81
// Update Best Trial - Id: 0 - Metric: 0.5536912515402218 - Pipeline: FastTreeBinary
// evaluate test dataset on best model.
var bestModel = result.Model;
var eval = bestModel.Transform(trainTestSplit.TestSet);
var metrics = context.BinaryClassification.Evaluate(eval);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.67
// AUC: 0.75
// F1 Score: 0.33
// Negative Precision: 0.88
// Negative Recall: 0.70
// Positive Precision: 0.25
// Positive Recall: 0.50
// TEST POSITIVE RATIO: 0.1667(2.0 / (2.0 + 10.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 1 | 1 | 0.5000
// negative || 3 | 7 | 0.7000
// ||======================
// Precision || 0.2500 | 0.8750 |
}
private static IEnumerable<BinaryClassificationDataPoint> GenerateRandomBinaryClassificationDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new BinaryClassificationDataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class BinaryClassificationDataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Constructors
AutoMLExperiment(MLContext, AutoMLExperiment+AutoMLExperimentSettings) |
Methods
AddSearchSpace(String, SearchSpace) | |
Run() |
Run experiment and return the best trial result synchronizely. |
RunAsync(CancellationToken) |
Run experiment and return the best trial result asynchronizely. The experiment returns the current best trial result if there's any trial completed when |
SetMaximumMemoryUsageInMegaByte(Double) | |
SetMaxModelToExplore(Int32) | |
SetMonitor<TMonitor>() | |
SetMonitor<TMonitor>(Func<IServiceProvider,TMonitor>) | |
SetMonitor<TMonitor>(TMonitor) | |
SetTrainingTimeInSeconds(UInt32) | |
SetTrialRunner<TTrialRunner>() | |
SetTrialRunner<TTrialRunner>(Func<IServiceProvider,TTrialRunner>) | |
SetTrialRunner<TTrialRunner>(TTrialRunner) | |
SetTuner<TTuner>() | |
SetTuner<TTuner>(Func<IServiceProvider,TTuner>) | |
SetTuner<TTuner>(TTuner) |
Extension Methods
SetBinaryClassificationMetric(AutoMLExperiment, BinaryClassificationMetric, String, String) |
Set Microsoft.ML.AutoML.BinaryMetricManager as evaluation manager for AutoMLExperiment. This will make
AutoMLExperiment uses |
SetCheckpoint(AutoMLExperiment, String) |
Set checkpoint folder for AutoMLExperiment. The checkpoint folder will be used to save temporary output, run history and many other stuff which will be used for restoring training process from last checkpoint and continue training. |
SetCostFrugalTuner(AutoMLExperiment) |
Set Microsoft.ML.AutoML.CostFrugalTuner as tuner for hyper-parameter optimization. |
SetDataset(AutoMLExperiment, DataOperationsCatalog+TrainTestData) |
Set train and validation dataset for AutoMLExperiment. This will make AutoMLExperiment uses TrainSet from |
SetDataset(AutoMLExperiment, IDataView, IDataView, Boolean) |
Set train and validation dataset for AutoMLExperiment. This will make AutoMLExperiment uses |
SetDataset(AutoMLExperiment, IDataView, Int32, String) |
Set cross-validation dataset for AutoMLExperiment. This will make AutoMLExperiment use n= |
SetEciCostFrugalTuner(AutoMLExperiment) |
set Microsoft.ML.AutoML.EciCostFrugalTuner as tuner for hyper-parameter optimization. This tuner only works with search space from SweepablePipeline. |
SetGridSearchTuner(AutoMLExperiment, Int32) |
set Microsoft.ML.AutoML.GridSearchTuner as tuner for hyper parameter optimization. |
SetMulticlassClassificationMetric(AutoMLExperiment, MulticlassClassificationMetric, String, String) |
Set Microsoft.ML.AutoML.MultiClassMetricManager as evaluation manager for AutoMLExperiment. This will make
AutoMLExperiment uses |
SetPerformanceMonitor(AutoMLExperiment, Int32) |
Set DefaultPerformanceMonitor as IPerformanceMonitor for AutoMLExperiment. |
SetPerformanceMonitor<TPerformanceMonitor>(AutoMLExperiment, Func<IServiceProvider,TPerformanceMonitor>) |
Set a custom performance monitor as IPerformanceMonitor for AutoMLExperiment. |
SetPerformanceMonitor<TPerformanceMonitor>(AutoMLExperiment) |
Set a custom performance monitor as IPerformanceMonitor for AutoMLExperiment. |
SetPipeline(AutoMLExperiment, SweepablePipeline) |
Set |
SetRandomSearchTuner(AutoMLExperiment, Nullable<Int32>) |
set Microsoft.ML.AutoML.RandomSearchTuner as tuner for hyper parameter optimization. If |
SetRegressionMetric(AutoMLExperiment, RegressionMetric, String, String) |
Set Microsoft.ML.AutoML.RegressionMetricManager as evaluation manager for AutoMLExperiment. This will make
AutoMLExperiment uses |
SetSmacTuner(AutoMLExperiment, Int32, Int32, Int32, Int32, Single, Int32, Int32, Double, Int32) |
Set Microsoft.ML.AutoML.SmacTuner as tuner for hyper-parameter optimization. The performance of smac is in a large extend determined
by |