Artikel ini menunjukkan cara memanggil API Analisis Gambar 3.2 untuk mengembalikan informasi tentang fitur visual gambar. Artikel ini juga menunjukkan kepada Anda cara mengurai informasi yang dimunculkan menggunakan SDK klien atau REST API.
Kode dalam panduan ini menggunakan gambar jarak jauh yang dirujuk oleh URL. Mungkin Anda ingin mencoba gambar milik sendiri yang berbeda untuk melihat kemampuan lengkap fitur Analisis Gambar.
Saat menganalisis citra jarak jauh, Anda menentukan URL citra dengan memformat badan permintaan seperti ini: {"url":"http://example.com/images/test.jpg"}
.
Untuk menganalisis citra lokal, Anda menempatkan data citra biner dalam badan permintaan HTTP.
Di kelas utama, simpan referensi ke URL gambar yang ingin Anda analisis.
// URL image used for analyzing an image (image of puppy)
private const string ANALYZE_URL_IMAGE = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/refs/heads/master/ComputerVision/Images/dog.jpg";
Tip
Anda juga dapat menganalisis gambar lokal. Lihat metode ComputerVisionClient, seperti AnalyzeImageInStreamAsync. Atau, lihat sampel kode pada GitHub untuk skenario yang melibatkan gambar lokal.
Di kelas utama, simpan referensi ke URL gambar yang ingin Anda analisis.
String pathToRemoteImage = "https://github.com/Azure-Samples/cognitive-services-sample-data-files/raw/master/ComputerVision/Images/faces.jpg";
Tip
Anda juga dapat menganalisis gambar lokal. Lihat metode ComputerVision, seperti AnalyzeImage. Atau, lihat sampel kode pada GitHub untuk skenario yang melibatkan gambar lokal.
Di fungsi utama, simpan referensi ke URL gambar yang ingin Anda analisis.
const describeURL = 'https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/celebrities.jpg';
Tip
Anda juga dapat menganalisis gambar lokal. Lihat metode ComputerVisionClient, seperti describeImageInStream. Atau, lihat sampel kode pada GitHub untuk skenario yang melibatkan gambar lokal.
Simpan referensi ke URL gambar yang ingin Anda analisis.
remote_image_url = "https://moderatorsampleimages.blob.core.windows.net/samples/sample16.png"
Tip
Anda juga dapat menganalisis gambar lokal. Lihat metode ComputerVisionClientOperationsMixin, seperti analyze_image_in_stream. Atau, lihat sampel kode pada GitHub untuk skenario yang melibatkan gambar lokal.
API Analisis memberi Anda akses ke semua fitur analisis gambar layanan. Pilih operasi mana yang akan dilakukan berdasarkan kasus penggunaan Anda sendiri. Lihat gambaran umum untuk deskripsi setiap fitur. Contoh di bagian di bawah ini menambahkan semua fitur visual yang tersedia, tetapi untuk penggunaan praktis Anda mungkin hanya memerlukan satu atau dua.
Anda dapat menentukan fitur mana yang ingin Anda gunakan dengan mengatur parameter kueri URL pada Analisis API. Parameter dapat memiliki beberapa nilai, dipisahkan dengan koma. Setiap fitur yang Anda tentukan akan memakan waktu komputasi lebih lama, jadi tentukan yang Anda butuhkan saja.
Parameter URL |
Nilai |
Deskripsi |
features |
Read |
membaca teks yang terlihat dalam gambar dan mengeluarkannya sebagai data JSON terstruktur. |
features |
Description |
mendeskripsikan konten gambar dengan kalimat lengkap dalam bahasa yang didukung. |
features |
SmartCrops |
menemukan koordinat persegi panjang yang akan memangkas gambar ke rasio aspek yang diinginkan sambil mempertahankan area yang diinginkan. |
features |
Objects |
mendeteksi beragam objek dalam gambar, termasuk perkiraan lokasi. Argumen Brands hanya tersedia dalam bahasa Inggris. |
features |
Tags |
menandai gambar dengan daftar kata-kata terperinci yang terkait dengan konten gambar. |
URL yang diisi terlihat seperti ini:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags
Tentukan metode baru Anda untuk analisis gambar. Tambahkan kode di bawah ini, yang menentukan fitur visual yang ingin Anda ekstrak dalam analisis Anda. Lihat enum VisualFeatureTypes untuk daftar lengkapnya.
/*
* ANALYZE IMAGE - URL IMAGE
* Analyze URL image. Extracts captions, categories, tags, objects, faces, racy/adult/gory content,
* brands, celebrities, landmarks, color scheme, and image types.
*/
public static async Task AnalyzeImageUrl(ComputerVisionClient client, string imageUrl)
{
Console.WriteLine("----------------------------------------------------------");
Console.WriteLine("ANALYZE IMAGE - URL");
Console.WriteLine();
// Creating a list that defines the features to be extracted from the image.
List<VisualFeatureTypes?> features = new List<VisualFeatureTypes?>()
{
VisualFeatureTypes.Categories, VisualFeatureTypes.Description,
VisualFeatureTypes.Faces, VisualFeatureTypes.ImageType,
VisualFeatureTypes.Tags, VisualFeatureTypes.Adult,
VisualFeatureTypes.Color, VisualFeatureTypes.Brands,
VisualFeatureTypes.Objects
};
Tentukan fitur visual yang ingin Anda ekstrak dalam analisis Anda. Lihat enum VisualFeatureTypes untuk daftar lengkapnya.
// This list defines the features to be extracted from the image.
List<VisualFeatureTypes> featuresToExtractFromRemoteImage = new ArrayList<>();
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.DESCRIPTION);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.CATEGORIES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.TAGS);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.FACES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.ADULT);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.COLOR);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.IMAGE_TYPE);
Tentukan fitur visual yang ingin Anda ekstrak dalam analisis Anda. Lihat enum VisualFeatureTypes untuk daftar lengkapnya.
// Get the visual feature for analysis
const features = ['Categories','Brands','Adult','Color','Description','Faces','Image_type','Objects','Tags'];
const domainDetails = ['Celebrities','Landmarks'];
Tentukan fitur visual yang ingin Anda ekstrak dalam analisis Anda. Lihat enum VisualFeatureTypes untuk daftar lengkapnya.
print("===== Analyze an image - remote =====")
# Select the visual feature(s) you want.
remote_image_features = [VisualFeatureTypes.categories,VisualFeatureTypes.brands,VisualFeatureTypes.adult,VisualFeatureTypes.color,VisualFeatureTypes.description,VisualFeatureTypes.faces,VisualFeatureTypes.image_type,VisualFeatureTypes.objects,VisualFeatureTypes.tags]
remote_image_details = [Details.celebrities,Details.landmarks]
Anda juga dapat menentukan bahasa data yang dikembalikan.
Parameter kueri URL berikut menentukan bahasa. Nilai defaultnya adalah en
.
Parameter URL |
Nilai |
Deskripsi |
language |
en |
Inggris |
language |
es |
Spanyol |
language |
ja |
Jepang |
language |
pt |
Portugis |
language |
zh |
Bahasa Tionghoa Sederhana |
URL yang diisi terlihat seperti ini:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags&language=en
Gunakan parameter bahasa pada panggilan AnalyzeImageAsync untuk menentukan bahasa. Panggilan metode yang menentukan bahasa akan terlihat seperti berikut ini.
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features, language: "en");
Gunakan input AnalyzeImageOptionalParameter dalam panggilan Analisis untuk menentukan bahasa. Panggilan metode yang menentukan bahasa akan terlihat seperti berikut ini.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromLocalImage)
.language("en")
.execute();
Gunakan properti bahasa pada input ComputerVisionClientAnalyzeImageOptionalParams dalam panggilan Analisis Anda untuk menentukan bahasa. Panggilan metode yang menentukan bahasa akan terlihat seperti berikut ini.
const result = (await computerVisionClient.analyzeImage(imageURL,{visualFeatures: features, language: 'en'}));
Gunakan parameter bahasa pada panggilan analyze_image untuk menentukan bahasa. Panggilan metode yang menentukan bahasa akan terlihat seperti berikut ini.
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details, 'en')
Bagian ini menunjukkan cara mengurai hasil panggilan API. Termasuk panggilan API itu sendiri.
Layanan mengembalikan respons HTTP 200
, dan isi berisi data yang dikembalikan dalam bentuk string JSON. Teks berikut ini adalah contoh respons JSON.
{
"metadata":
{
"width": 300,
"height": 200
},
"tagsResult":
{
"values":
[
{
"name": "grass",
"confidence": 0.9960499405860901
},
{
"name": "outdoor",
"confidence": 0.9956876635551453
},
{
"name": "building",
"confidence": 0.9893627166748047
},
{
"name": "property",
"confidence": 0.9853052496910095
},
{
"name": "plant",
"confidence": 0.9791355729103088
}
]
}
}
Kode kesalahan
Lihat daftar kemungkinan kesalahan dan penyebabnya berikut ini:
- 400
InvalidImageUrl
- URL gambar diformat dengan buruk atau tidak dapat diakses.
InvalidImageFormat
- Data input bukanlah gambar yang valid.
InvalidImageSize
- Gambar input terlalu besar.
NotSupportedVisualFeature
- Jenis fitur yang ditentukan tidak valid.
NotSupportedImage
- Gambar tidak didukung, misalnya pornografi anak.
InvalidDetails
- Nilai parameter detail
tidak didukung.
NotSupportedLanguage
- Operasi yang diminta tidak didukung dalam bahasa yang ditentukan.
BadArgument
- Detail lebih lanjut disediakan dalam pesan kesalahan.
- 415 - Kesalahan jenis media yang tidak didukung. Tipe Konten tidak ada dalam jenis yang diizinkan:
- Untuk URL gambar, Jenis-Kontennya harus
application/json
- Untuk data gambar biner, Jenis-Kontennya harus
application/octet-stream
atau multipart/form-data
- 500
FailedToProcess
Timeout
- Waktu pemrosesan gambar habis.
InternalServerError
Kode berikut memanggil API Analisis Gambar dan mencetak hasilnya ke konsol.
// Analyze the URL image
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features);
// Summarizes the image content.
Console.WriteLine("Summary:");
foreach (var caption in results.Description.Captions)
{
Console.WriteLine($"{caption.Text} with confidence {caption.Confidence}");
}
Console.WriteLine();
// Display categories the image is divided into.
Console.WriteLine("Categories:");
foreach (var category in results.Categories)
{
Console.WriteLine($"{category.Name} with confidence {category.Score}");
}
Console.WriteLine();
// Image tags and their confidence score
Console.WriteLine("Tags:");
foreach (var tag in results.Tags)
{
Console.WriteLine($"{tag.Name} {tag.Confidence}");
}
Console.WriteLine();
// Objects
Console.WriteLine("Objects:");
foreach (var obj in results.Objects)
{
Console.WriteLine($"{obj.ObjectProperty} with confidence {obj.Confidence} at location {obj.Rectangle.X}, " +
$"{obj.Rectangle.X + obj.Rectangle.W}, {obj.Rectangle.Y}, {obj.Rectangle.Y + obj.Rectangle.H}");
}
Console.WriteLine();
// Faces
Console.WriteLine("Faces:");
foreach (var face in results.Faces)
{
Console.WriteLine($"A {face.Gender} of age {face.Age} at location {face.FaceRectangle.Left}, " +
$"{face.FaceRectangle.Left}, {face.FaceRectangle.Top + face.FaceRectangle.Width}, " +
$"{face.FaceRectangle.Top + face.FaceRectangle.Height}");
}
Console.WriteLine();
// Adult or racy content, if any.
Console.WriteLine("Adult:");
Console.WriteLine($"Has adult content: {results.Adult.IsAdultContent} with confidence {results.Adult.AdultScore}");
Console.WriteLine($"Has racy content: {results.Adult.IsRacyContent} with confidence {results.Adult.RacyScore}");
Console.WriteLine($"Has gory content: {results.Adult.IsGoryContent} with confidence {results.Adult.GoreScore}");
Console.WriteLine();
// Well-known (or custom, if set) brands.
Console.WriteLine("Brands:");
foreach (var brand in results.Brands)
{
Console.WriteLine($"Logo of {brand.Name} with confidence {brand.Confidence} at location {brand.Rectangle.X}, " +
$"{brand.Rectangle.X + brand.Rectangle.W}, {brand.Rectangle.Y}, {brand.Rectangle.Y + brand.Rectangle.H}");
}
Console.WriteLine();
// Celebrities in image, if any.
Console.WriteLine("Celebrities:");
foreach (var category in results.Categories)
{
if (category.Detail?.Celebrities != null)
{
foreach (var celeb in category.Detail.Celebrities)
{
Console.WriteLine($"{celeb.Name} with confidence {celeb.Confidence} at location {celeb.FaceRectangle.Left}, " +
$"{celeb.FaceRectangle.Top}, {celeb.FaceRectangle.Height}, {celeb.FaceRectangle.Width}");
}
}
}
Console.WriteLine();
// Popular landmarks in image, if any.
Console.WriteLine("Landmarks:");
foreach (var category in results.Categories)
{
if (category.Detail?.Landmarks != null)
{
foreach (var landmark in category.Detail.Landmarks)
{
Console.WriteLine($"{landmark.Name} with confidence {landmark.Confidence}");
}
}
}
Console.WriteLine();
// Identifies the color scheme.
Console.WriteLine("Color Scheme:");
Console.WriteLine("Is black and white?: " + results.Color.IsBWImg);
Console.WriteLine("Accent color: " + results.Color.AccentColor);
Console.WriteLine("Dominant background color: " + results.Color.DominantColorBackground);
Console.WriteLine("Dominant foreground color: " + results.Color.DominantColorForeground);
Console.WriteLine("Dominant colors: " + string.Join(",", results.Color.DominantColors));
Console.WriteLine();
// Detects the image types.
Console.WriteLine("Image Type:");
Console.WriteLine("Clip Art Type: " + results.ImageType.ClipArtType);
Console.WriteLine("Line Drawing Type: " + results.ImageType.LineDrawingType);
Console.WriteLine();
Kode berikut memanggil API Analisis Gambar dan mencetak hasilnya ke konsol.
// Call the Computer Vision service and tell it to analyze the loaded image.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromRemoteImage).execute();
// Display image captions and confidence values.
System.out.println("\nCaptions: ");
for (ImageCaption caption : analysis.description().captions()) {
System.out.printf("\'%s\' with confidence %f\n", caption.text(), caption.confidence());
}
// Display image category names and confidence values.
System.out.println("\nCategories: ");
for (Category category : analysis.categories()) {
System.out.printf("\'%s\' with confidence %f\n", category.name(), category.score());
}
// Display image tags and confidence values.
System.out.println("\nTags: ");
for (ImageTag tag : analysis.tags()) {
System.out.printf("\'%s\' with confidence %f\n", tag.name(), tag.confidence());
}
// Display any faces found in the image and their location.
System.out.println("\nFaces: ");
for (FaceDescription face : analysis.faces()) {
System.out.printf("\'%s\' of age %d at location (%d, %d), (%d, %d)\n", face.gender(), face.age(),
face.faceRectangle().left(), face.faceRectangle().top(),
face.faceRectangle().left() + face.faceRectangle().width(),
face.faceRectangle().top() + face.faceRectangle().height());
}
// Display whether any adult or racy content was detected and the confidence
// values.
System.out.println("\nAdult: ");
System.out.printf("Is adult content: %b with confidence %f\n", analysis.adult().isAdultContent(),
analysis.adult().adultScore());
System.out.printf("Has racy content: %b with confidence %f\n", analysis.adult().isRacyContent(),
analysis.adult().racyScore());
// Display the image color scheme.
System.out.println("\nColor scheme: ");
System.out.println("Is black and white: " + analysis.color().isBWImg());
System.out.println("Accent color: " + analysis.color().accentColor());
System.out.println("Dominant background color: " + analysis.color().dominantColorBackground());
System.out.println("Dominant foreground color: " + analysis.color().dominantColorForeground());
System.out.println("Dominant colors: " + String.join(", ", analysis.color().dominantColors()));
// Display any celebrities detected in the image and their locations.
System.out.println("\nCelebrities: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().celebrities() != null) {
for (CelebritiesModel celeb : category.detail().celebrities()) {
System.out.printf("\'%s\' with confidence %f at location (%d, %d), (%d, %d)\n", celeb.name(),
celeb.confidence(), celeb.faceRectangle().left(), celeb.faceRectangle().top(),
celeb.faceRectangle().left() + celeb.faceRectangle().width(),
celeb.faceRectangle().top() + celeb.faceRectangle().height());
}
}
}
// Display any landmarks detected in the image and their locations.
System.out.println("\nLandmarks: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().landmarks() != null) {
for (LandmarksModel landmark : category.detail().landmarks()) {
System.out.printf("\'%s\' with confidence %f\n", landmark.name(), landmark.confidence());
}
}
}
// Display what type of clip art or line drawing the image is.
System.out.println("\nImage type:");
System.out.println("Clip art type: " + analysis.imageType().clipArtType());
System.out.println("Line drawing type: " + analysis.imageType().lineDrawingType());
Kode berikut memanggil API Analisis Gambar dan mencetak hasilnya ke konsol.
const result = (await computerVisionClient.analyzeImage(facesImageURL,{visualFeatures: features},{details: domainDetails}));
// Detect faces
// Print the bounding box, gender, and age from the faces.
const faces = result.faces
if (faces.length) {
console.log(`${faces.length} face${faces.length == 1 ? '' : 's'} found:`);
for (const face of faces) {
console.log(` Gender: ${face.gender}`.padEnd(20)
+ ` Age: ${face.age}`.padEnd(10) + `at ${formatRectFaces(face.faceRectangle)}`);
}
} else { console.log('No faces found.'); }
// Formats the bounding box
function formatRectFaces(rect) {
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12)
+ `right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
// Detect Objects
const objects = result.objects;
console.log();
// Print objects bounding box and confidence
if (objects.length) {
console.log(`${objects.length} object${objects.length == 1 ? '' : 's'} found:`);
for (const obj of objects) { console.log(` ${obj.object} (${obj.confidence.toFixed(2)}) at ${formatRectObjects(obj.rectangle)}`); }
} else { console.log('No objects found.'); }
// Formats the bounding box
function formatRectObjects(rect) {
return `top=${rect.y}`.padEnd(10) + `left=${rect.x}`.padEnd(10) + `bottom=${rect.y + rect.h}`.padEnd(12)
+ `right=${rect.x + rect.w}`.padEnd(10) + `(${rect.w}x${rect.h})`;
}
console.log();
// Detect tags
const tags = result.tags;
console.log(`Tags: ${formatTags(tags)}`);
// Format tags for display
function formatTags(tags) {
return tags.map(tag => (`${tag.name} (${tag.confidence.toFixed(2)})`)).join(', ');
}
console.log();
// Detect image type
const types = result.imageType;
console.log(`Image appears to be ${describeType(types)}`);
function describeType(imageType) {
if (imageType.clipArtType && imageType.clipArtType > imageType.lineDrawingType) return 'clip art';
if (imageType.lineDrawingType && imageType.clipArtType < imageType.lineDrawingType) return 'a line drawing';
return 'a photograph';
}
console.log();
// Detect Category
const categories = result.categories;
console.log(`Categories: ${formatCategories(categories)}`);
// Formats the image categories
function formatCategories(categories) {
categories.sort((a, b) => b.score - a.score);
return categories.map(cat => `${cat.name} (${cat.score.toFixed(2)})`).join(', ');
}
console.log();
// Detect Brands
const brands = result.brands;
// Print the brands found
if (brands.length) {
console.log(`${brands.length} brand${brands.length != 1 ? 's' : ''} found:`);
for (const brand of brands) {
console.log(` ${brand.name} (${brand.confidence.toFixed(2)} confidence)`);
}
} else { console.log(`No brands found.`); }
console.log();
// Detect Colors
const color = result.color;
printColorScheme(color);
// Print a detected color scheme
function printColorScheme(colors) {
console.log(`Image is in ${colors.isBwImg ? 'black and white' : 'color'}`);
console.log(`Dominant colors: ${colors.dominantColors.join(', ')}`);
console.log(`Dominant foreground color: ${colors.dominantColorForeground}`);
console.log(`Dominant background color: ${colors.dominantColorBackground}`);
console.log(`Suggested accent color: #${colors.accentColor}`);
}
console.log();
// Detect landmarks
const domain = result.landmarks;
// Prints domain-specific, recognized objects
if (domain.length) {
console.log(`${domain.length} ${domain.length == 1 ? 'landmark' : 'landmarks'} found:`);
for (const obj of domain) {
console.log(` ${obj.name}`.padEnd(20) + `(${obj.confidence.toFixed(2)} confidence)`.padEnd(20) + `${formatRectDomain(obj.faceRectangle)}`);
}
} else {
console.log('No landmarks found.');
}
// Formats bounding box
function formatRectDomain(rect) {
if (!rect) return '';
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12) +
`right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
console.log();
// Detect Adult content
// Function to confirm racy or not
const isIt = flag => flag ? 'is' : "isn't";
const adult = result.adult;
console.log(`This probably ${isIt(adult.isAdultContent)} adult content (${adult.adultScore.toFixed(4)} score)`);
console.log(`This probably ${isIt(adult.isRacyContent)} racy content (${adult.racyScore.toFixed(4)} score)`);
console.log();
Kode berikut memanggil API Analisis Gambar dan mencetak hasilnya ke konsol.
# Call API with URL and features
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details)
# Print results with confidence score
print("Categories from remote image: ")
if (len(results_remote.categories) == 0):
print("No categories detected.")
else:
for category in results_remote.categories:
print("'{}' with confidence {:.2f}%".format(category.name, category.score * 100))
print()
# Detect faces
# Print the results with gender, age, and bounding box
print("Faces in the remote image: ")
if (len(results_remote.faces) == 0):
print("No faces detected.")
else:
for face in results_remote.faces:
print("'{}' of age {} at location {}, {}, {}, {}".format(face.gender, face.age, \
face.face_rectangle.left, face.face_rectangle.top, \
face.face_rectangle.left + face.face_rectangle.width, \
face.face_rectangle.top + face.face_rectangle.height))
# Adult content
# Print results with adult/racy score
print("Analyzing remote image for adult or racy content ... ")
print("Is adult content: {} with confidence {:.2f}".format(results_remote.adult.is_adult_content, results_remote.adult.adult_score * 100))
print("Has racy content: {} with confidence {:.2f}".format(results_remote.adult.is_racy_content, results_remote.adult.racy_score * 100))
print()
# Detect colors
# Print results of color scheme
print("Getting color scheme of the remote image: ")
print("Is black and white: {}".format(results_remote.color.is_bw_img))
print("Accent color: {}".format(results_remote.color.accent_color))
print("Dominant background color: {}".format(results_remote.color.dominant_color_background))
print("Dominant foreground color: {}".format(results_remote.color.dominant_color_foreground))
print("Dominant colors: {}".format(results_remote.color.dominant_colors))
print()
# Detect image type
# Prints type results with degree of accuracy
print("Type of remote image:")
if results_remote.image_type.clip_art_type == 0:
print("Image is not clip art.")
elif results_remote.image_type.line_drawing_type == 1:
print("Image is ambiguously clip art.")
elif results_remote.image_type.line_drawing_type == 2:
print("Image is normal clip art.")
else:
print("Image is good clip art.")
if results_remote.image_type.line_drawing_type == 0:
print("Image is not a line drawing.")
else:
print("Image is a line drawing")
# Detect brands
print("Detecting brands in remote image: ")
if len(results_remote.brands) == 0:
print("No brands detected.")
else:
for brand in results_remote.brands:
print("'{}' brand detected with confidence {:.1f}% at location {}, {}, {}, {}".format( \
brand.name, brand.confidence * 100, brand.rectangle.x, brand.rectangle.x + brand.rectangle.w, \
brand.rectangle.y, brand.rectangle.y + brand.rectangle.h))
# Detect objects
# Print detected objects results with bounding boxes
print("Detecting objects in remote image:")
if len(results_remote.objects) == 0:
print("No objects detected.")
else:
for object in detect_objects_results_remote.objects:
print("object at location {}, {}, {}, {}".format( \
object.rectangle.x, object.rectangle.x + object.rectangle.w, \
object.rectangle.y, object.rectangle.y + object.rectangle.h))
# Describe image
# Get the captions (descriptions) from the response, with confidence level
print("Description of remote image: ")
if (len(results_remote.description.captions) == 0):
print("No description detected.")
else:
for caption in results_remote.description.captions:
print("'{}' with confidence {:.2f}%".format(caption.text, caption.confidence * 100))
print()
# Return tags
# Print results with confidence score
print("Tags in the remote image: ")
if (len(results_remote.tags) == 0):
print("No tags detected.")
else:
for tag in results_remote.tags:
print("'{}' with confidence {:.2f}%".format(tag.name, tag.confidence * 100))
# Detect celebrities
print("Celebrities in the remote image:")
if (len(results_remote.categories.detail.celebrities) == 0):
print("No celebrities detected.")
else:
for celeb in results_remote.categories.detail.celebrities:
print(celeb["name"])
# Detect landmarks
print("Landmarks in the remote image:")
if len(results_remote.categories.detail.landmarks) == 0:
print("No landmarks detected.")
else:
for landmark in results_remote.categories.detail.landmarks:
print(landmark["name"])