Output terstruktur
Output terstruktur membuat model mengikuti definisi Skema JSON yang Anda berikan sebagai bagian dari panggilan API inferensi Anda. Ini berbeda dengan fitur mode JSON yang lebih lama, yang menjamin JSON yang valid akan dihasilkan, tetapi tidak dapat memastikan kepatuhan yang ketat terhadap skema yang disediakan. Output terstruktur direkomendasikan untuk panggilan fungsi, mengekstrak data terstruktur, dan membangun alur kerja multi-langkah yang kompleks.
Catatan
Output terstruktur saat ini tidak didukung dengan:
- Bawa skenario data Anda sendiri.
- Asisten atau Azure AI Agents Service.
-
gpt-4o-audio-preview
dangpt-4o-mini-audio-preview
versi:2024-12-17
.
-
o3-mini
versi2025-01-31
-
o1
versi:2024-12-17
-
gpt-4o-mini
versi:2024-07-18
-
gpt-4o
versi:2024-08-06
Dukungan untuk output terstruktur pertama kali ditambahkan dalam versi 2024-08-01-preview
API . Ini tersedia di API pratinjau terbaru serta API GA terbaru: 2024-10-21
.
Anda dapat menggunakan Pydantic
untuk menentukan skema objek di Python. Bergantung pada versi OpenAI dan Pydantic
pustaka apa yang Anda jalankan, Anda mungkin perlu meningkatkan ke versi yang lebih baru. Contoh-contoh ini diuji terhadap openai 1.42.0
dan pydantic 2.8.2
.
pip install openai pydantic --upgrade
Jika Anda baru menggunakan ID Microsoft Entra untuk autentikasi, lihat Cara mengonfigurasi Layanan Azure OpenAI dengan autentikasi ID Microsoft Entra.
from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_ad_token_provider=token_provider,
api_version="2024-10-21"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
event = completion.choices[0].message.parsed
print(event)
print(completion.model_dump_json(indent=2))
name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
"id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
"refusal": null,
"role": "assistant",
"function_call": null,
"tool_calls": [],
"parsed": {
"name": "Science Fair",
"date": "Friday",
"participants": [
"Alice",
"Bob"
]
}
}
}
],
"created": 1724857389,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": "fp_1c2eaec9fe",
"usage": {
"completion_tokens": 27,
"prompt_tokens": 32,
"total_tokens": 59
}
}
Output Terstruktur untuk panggilan fungsi dapat diaktifkan dengan satu parameter, dengan menyediakan strict: true
.
Catatan
Output terstruktur tidak didukung dengan panggilan fungsi paralel. Saat menggunakan output terstruktur, atur parallel_tool_calls
ke false
.
from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-10-21"
)
class GetDeliveryDate(BaseModel):
order_id: str
tools = [openai.pydantic_function_tool(GetDeliveryDate)]
messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
response = client.chat.completions.create(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=messages,
tools=tools
)
print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))
Tambahkan paket berikut ke proyek Anda untuk bekerja dengan Azure OpenAI:
- Azure.AI.OpenAI: Menyediakan klien Azure OpenAI dengan fungsionalitas khusus Azure yang dibangun di atas dependensi pustaka OpenAI standar.
- Azure.Identity: Menyediakan dukungan autentikasi token ID Microsoft Entra di seluruh pustaka Azure SDK.
- Newtonsoft.Json.Schema: Menyediakan utilitas yang bermanfaat untuk bekerja dengan skema JSON.
dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Newtonsoft.Json.Schema
Jika Anda baru menggunakan ID Microsoft Entra untuk autentikasi, lihat Cara mengonfigurasi Layanan Azure OpenAI dengan autentikasi ID Microsoft Entra.
using Azure.AI.OpenAI;
using Azure.Identity;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var client = openAIClient.GetChatClient("gpt-4o");
// Create a chat with initial prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Get the schema of the class for the structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a completion with structured output
var chatUpdates = client.CompleteChatStreamingAsync(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema))
});
// Write the structured response
await foreach (var chatUpdate in chatUpdates)
{
foreach (var contentPart in chatUpdate.ContentUpdate)
{
Console.Write(contentPart.Text);
}
}
// The class for the structured response
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public List<string> Participants { get; set; }
}
Output Terstruktur untuk panggilan fungsi dapat diaktifkan dengan satu parameter, dengan menyediakan strict: true
.
using Azure.AI.OpenAI;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var chatClient = openAIClient.GetChatClient("gpt-4o");
// Local function to be used by the assistant tooling
string GetTemperature(string location, string date)
{
// Placeholder for Weather API
if(location == "Seattle" && date == "2025-06-01")
{
return "75";
}
return "50";
}
// Create a tool to get the temperature
ChatTool GetTemperatureTool = ChatTool.CreateFunctionTool(
functionName: nameof(GetTemperature),
functionSchemaIsStrict: true,
functionDescription: "Get the projected temperature by date and location.",
functionParameters: BinaryData.FromBytes("""
{
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location of the weather."
},
"date": {
"type": "string",
"description": "The date of the projected weather."
}
},
"required": ["location", "date"],
"additionalProperties": false
}
"""u8.ToArray())
);
// Create a chat with prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Create a JSON schema for the CalendarEvent structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a chat completion from the AI model
var completion = chatClient.CompleteChat(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema)),
Tools = { GetTemperatureTool }
});
Console.WriteLine(completion.Value.ToolCalls[0].FunctionName);
// Structured response class
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public string Temperature { get; set; }
public List<string> Participants { get; set; }
}
response_format
diatur ke json_schema
dengan strict: true
set.
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "CalendarEventResponse",
"strict": true,
"schema": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"date": {
"type": "string"
},
"participants": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": [
"name",
"date",
"participants"
],
"additionalProperties": false
}
}
}
}'
Output:
{
"id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
"object": "chat.completion",
"created": 1724868330,
"model": "gpt-4o-2024-08-06",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 33,
"completion_tokens": 27,
"total_tokens": 60
},
"system_fingerprint": "fp_1c2eaec9fe"
}
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
},
{
"role": "user",
"content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "query",
"description": "Execute a query.",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"table_name": {
"type": "string",
"enum": ["orders"]
},
"columns": {
"type": "array",
"items": {
"type": "string",
"enum": [
"id",
"status",
"expected_delivery_date",
"delivered_at",
"shipped_at",
"ordered_at",
"canceled_at"
]
}
},
"conditions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"column": {
"type": "string"
},
"operator": {
"type": "string",
"enum": ["=", ">", "<", ">=", "<=", "!="]
},
"value": {
"anyOf": [
{
"type": "string"
},
{
"type": "number"
},
{
"type": "object",
"properties": {
"column_name": {
"type": "string"
}
},
"required": ["column_name"],
"additionalProperties": false
}
]
}
},
"required": ["column", "operator", "value"],
"additionalProperties": false
}
},
"order_by": {
"type": "string",
"enum": ["asc", "desc"]
}
},
"required": ["table_name", "columns", "conditions", "order_by"],
"additionalProperties": false
}
}
}
]
}'
Output terstruktur Azure OpenAI mendukung subset Skema JSON yang sama dengan OpenAI.
- String
- Number
- Boolean
- Bilangan bulat
- Objek
- Array
- Enum
- anyOf
Catatan
Objek akar tidak boleh berjenis anyOf
.
Semua bidang atau parameter fungsi harus disertakan sesuai kebutuhan. Dalam contoh di bawah ini location
, dan unit
keduanya ditentukan di bawah "required": ["location", "unit"]
.
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": "string",
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": ["location", "unit"]
}
Jika diperlukan, dimungkinkan untuk meniru parameter opsional dengan menggunakan jenis serikat dengan null
. Dalam contoh ini, ini dicapai dengan baris "type": ["string", "null"],
.
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": ["string", "null"],
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": [
"location", "unit"
]
}
}
Skema mungkin memiliki total hingga 100 properti objek, dengan hingga lima tingkat bersarang
Properti ini mengontrol apakah objek dapat memiliki pasangan nilai kunci tambahan yang tidak ditentukan dalam Skema JSON. Untuk menggunakan output terstruktur, Anda harus mengatur nilai ini ke false.
Output terstruktur diurutkan sama dengan skema yang disediakan. Untuk mengubah urutan output, ubah urutan skema yang Anda kirim sebagai bagian dari permintaan inferensi Anda.
Jenis | Kata Kunci yang Tidak Didukung |
---|---|
String | minlength maxLength pola format |
Number | minimum maksimum multipleOf |
Objek | patternProperties unevaluatedProperties propertyNames minProperties maxProperties |
Larik | unevaluatedItems Berisi minContains maxContains minItems maxItems uniqueItems |
Contoh skema yang didukung anyOf
:
{
"type": "object",
"properties": {
"item": {
"anyOf": [
{
"type": "object",
"description": "The user object to insert into the database",
"properties": {
"name": {
"type": "string",
"description": "The name of the user"
},
"age": {
"type": "number",
"description": "The age of the user"
}
},
"additionalProperties": false,
"required": [
"name",
"age"
]
},
{
"type": "object",
"description": "The address object to insert into the database",
"properties": {
"number": {
"type": "string",
"description": "The number of the address. Eg. for 123 main st, this would be 123"
},
"street": {
"type": "string",
"description": "The street name. Eg. for 123 main st, this would be main st"
},
"city": {
"type": "string",
"description": "The city of the address"
}
},
"additionalProperties": false,
"required": [
"number",
"street",
"city"
]
}
]
}
},
"additionalProperties": false,
"required": [
"item"
]
}
Contoh yang didukung:
{
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"$ref": "#/$defs/step"
}
},
"final_answer": {
"type": "string"
}
},
"$defs": {
"step": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": [
"explanation",
"output"
],
"additionalProperties": false
}
},
"required": [
"steps",
"final_answer"
],
"additionalProperties": false
}
Contoh menggunakan # untuk rekursi akar:
{
"name": "ui",
"description": "Dynamically generated UI",
"strict": true,
"schema": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "The type of the UI component",
"enum": ["div", "button", "header", "section", "field", "form"]
},
"label": {
"type": "string",
"description": "The label of the UI component, used for buttons or form fields"
},
"children": {
"type": "array",
"description": "Nested UI components",
"items": {
"$ref": "#"
}
},
"attributes": {
"type": "array",
"description": "Arbitrary attributes for the UI component, suitable for any element",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the attribute, for example onClick or className"
},
"value": {
"type": "string",
"description": "The value of the attribute"
}
},
"additionalProperties": false,
"required": ["name", "value"]
}
}
},
"required": ["type", "label", "children", "attributes"],
"additionalProperties": false
}
}
Contoh rekursi eksplisit:
{
"type": "object",
"properties": {
"linked_list": {
"$ref": "#/$defs/linked_list_node"
}
},
"$defs": {
"linked_list_node": {
"type": "object",
"properties": {
"value": {
"type": "number"
},
"next": {
"anyOf": [
{
"$ref": "#/$defs/linked_list_node"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"required": [
"next",
"value"
]
}
},
"additionalProperties": false,
"required": [
"linked_list"
]
}