Baca dalam bahasa Inggris

Bagikan melalui


Output terstruktur

Output terstruktur membuat model mengikuti definisi Skema JSON yang Anda berikan sebagai bagian dari panggilan API inferensi Anda. Ini berbeda dengan fitur mode JSON yang lebih lama, yang menjamin JSON yang valid akan dihasilkan, tetapi tidak dapat memastikan kepatuhan yang ketat terhadap skema yang disediakan. Output terstruktur direkomendasikan untuk panggilan fungsi, mengekstrak data terstruktur, dan membangun alur kerja multi-langkah yang kompleks.

Catatan

Output terstruktur saat ini tidak didukung dengan:

Model yang didukung

  • o3-mini versi 2025-01-31
  • o1 versi: 2024-12-17
  • gpt-4o-mini versi: 2024-07-18
  • gpt-4o versi: 2024-08-06

Dukungan API

Dukungan untuk output terstruktur pertama kali ditambahkan dalam versi 2024-08-01-previewAPI . Ini tersedia di API pratinjau terbaru serta API GA terbaru: 2024-10-21.

Memulai

Anda dapat menggunakan Pydantic untuk menentukan skema objek di Python. Bergantung pada versi OpenAI dan Pydantic pustaka apa yang Anda jalankan, Anda mungkin perlu meningkatkan ke versi yang lebih baru. Contoh-contoh ini diuji terhadap openai 1.42.0 dan pydantic 2.8.2.

pip install openai pydantic --upgrade

Jika Anda baru menggunakan ID Microsoft Entra untuk autentikasi, lihat Cara mengonfigurasi Layanan Azure OpenAI dengan autentikasi ID Microsoft Entra.

from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  azure_ad_token_provider=token_provider,
  api_version="2024-10-21"
)


class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
    ],
    response_format=CalendarEvent,
)

event = completion.choices[0].message.parsed

print(event)
print(completion.model_dump_json(indent=2))

Output

name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
  "id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "message": {
        "content": "{\n  \"name\": \"Science Fair\",\n  \"date\": \"Friday\",\n  \"participants\": [\"Alice\", \"Bob\"]\n}",
        "refusal": null,
        "role": "assistant",
        "function_call": null,
        "tool_calls": [],
        "parsed": {
          "name": "Science Fair",
          "date": "Friday",
          "participants": [
            "Alice",
            "Bob"
          ]
        }
      }
    }
  ],
  "created": 1724857389,
  "model": "gpt-4o-2024-08-06",
  "object": "chat.completion",
  "service_tier": null,
  "system_fingerprint": "fp_1c2eaec9fe",
  "usage": {
    "completion_tokens": 27,
    "prompt_tokens": 32,
    "total_tokens": 59
  }
}

Panggilan fungsi dengan output terstruktur

Output Terstruktur untuk panggilan fungsi dapat diaktifkan dengan satu parameter, dengan menyediakan strict: true.

Catatan

Output terstruktur tidak didukung dengan panggilan fungsi paralel. Saat menggunakan output terstruktur, atur parallel_tool_calls ke false.

from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version="2024-10-21"
)


class GetDeliveryDate(BaseModel):
    order_id: str

tools = [openai.pydantic_function_tool(GetDeliveryDate)]

messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"}) 

response = client.chat.completions.create(
    model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
    messages=messages,
    tools=tools
)

print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))

Memulai

Tambahkan paket berikut ke proyek Anda untuk bekerja dengan Azure OpenAI:

  • Azure.AI.OpenAI: Menyediakan klien Azure OpenAI dengan fungsionalitas khusus Azure yang dibangun di atas dependensi pustaka OpenAI standar.
  • Azure.Identity: Menyediakan dukungan autentikasi token ID Microsoft Entra di seluruh pustaka Azure SDK.
  • Newtonsoft.Json.Schema: Menyediakan utilitas yang bermanfaat untuk bekerja dengan skema JSON.
dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Newtonsoft.Json.Schema

Jika Anda baru menggunakan ID Microsoft Entra untuk autentikasi, lihat Cara mengonfigurasi Layanan Azure OpenAI dengan autentikasi ID Microsoft Entra.

using Azure.AI.OpenAI;
using Azure.Identity;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;

// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

AzureOpenAIClient openAIClient = new(
    new Uri(endpoint),
    new DefaultAzureCredential());

var client = openAIClient.GetChatClient("gpt-4o");

// Create a chat with initial prompts
var chat = new List<ChatMessage>()
    {
         new SystemChatMessage("Extract the event information and projected weather."),
         new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
    };

// Get the schema of the class for the structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();

// Get a completion with structured output
var chatUpdates = client.CompleteChatStreamingAsync(
        chat,
        new ChatCompletionOptions()
        {
            ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
                        "calenderEvent",
                        BinaryData.FromString(jsonSchema))
        });

// Write the structured response
await foreach (var chatUpdate in chatUpdates)
{
    foreach (var contentPart in chatUpdate.ContentUpdate)
    {
        Console.Write(contentPart.Text);
    }
}

// The class for the structured response
public class CalendarEvent()
{
    public string Name { get; set; }
    public string Date { get; set; }
    public List<string> Participants { get; set; }
}

Panggilan fungsi dengan output terstruktur

Output Terstruktur untuk panggilan fungsi dapat diaktifkan dengan satu parameter, dengan menyediakan strict: true.

using Azure.AI.OpenAI;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;

// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

AzureOpenAIClient openAIClient = new(
    new Uri(endpoint),
    new DefaultAzureCredential());

var chatClient = openAIClient.GetChatClient("gpt-4o");

// Local function to be used by the assistant tooling
string GetTemperature(string location, string date)
{
    // Placeholder for Weather API
    if(location == "Seattle" && date == "2025-06-01")
    {
        return "75";
    }

    return "50";
}

// Create a tool to get the temperature
ChatTool GetTemperatureTool = ChatTool.CreateFunctionTool(
    functionName: nameof(GetTemperature),
    functionSchemaIsStrict: true,
    functionDescription: "Get the projected temperature by date and location.",
    functionParameters: BinaryData.FromBytes("""
        {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The location of the weather."
                },
                "date": {
                    "type": "string",
                    "description": "The date of the projected weather."
                }
            },
            "required": ["location", "date"],
            "additionalProperties": false  
        }
        """u8.ToArray())
);

// Create a chat with prompts
var chat = new List<ChatMessage>()
    {
         new SystemChatMessage("Extract the event information and projected weather."),
         new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
    };

// Create a JSON schema for the CalendarEvent structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();

// Get a chat completion from the AI model
var completion = chatClient.CompleteChat(
        chat,
        new ChatCompletionOptions()
        {
            ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
                "calenderEvent",
                BinaryData.FromString(jsonSchema)),
            Tools = { GetTemperatureTool }
        });

Console.WriteLine(completion.Value.ToolCalls[0].FunctionName);

// Structured response class
public class CalendarEvent()
{
    public string Name { get; set; }
    public string Date { get; set; }
    public string Temperature { get; set; }
    public List<string> Participants { get; set; }
}

Memulai

response_format diatur ke json_schema dengan strict: true set.

curl -X POST  https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
  -H "api-key: $AZURE_OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
    -d '{
        "messages": [
                {"role": "system", "content": "Extract the event information."},
                {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
            ],
            "response_format": {
                "type": "json_schema",
                "json_schema": {
                    "name": "CalendarEventResponse",
                    "strict": true,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "name": {
                              "type": "string"
                            },
                            "date": {
                                "type": "string"
                            },
                            "participants": {
                                "type": "array",
                                "items": {
                                    "type": "string"
                                }
                            }
                        },
                        "required": [
                            "name",
                            "date",
                            "participants"
                        ],
                        "additionalProperties": false
                    }
                }
          }
  }'

Output:

{
  "id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
  "object": "chat.completion",
  "created": 1724868330,
  "model": "gpt-4o-2024-08-06",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "{\n  \"name\": \"Science Fair\",\n  \"date\": \"Friday\",\n  \"participants\": [\"Alice\", \"Bob\"]\n}"
      },
      "logprobs": null,
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 33,
    "completion_tokens": 27,
    "total_tokens": 60
  },
  "system_fingerprint": "fp_1c2eaec9fe"
}

Panggilan fungsi dengan output terstruktur

curl -X POST  https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
  -H "api-key: $AZURE_OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
    },
    {
      "role": "user",
      "content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "query",
        "description": "Execute a query.",
        "strict": true,
        "parameters": {
          "type": "object",
          "properties": {
            "table_name": {
              "type": "string",
              "enum": ["orders"]
            },
            "columns": {
              "type": "array",
              "items": {
                "type": "string",
                "enum": [
                  "id",
                  "status",
                  "expected_delivery_date",
                  "delivered_at",
                  "shipped_at",
                  "ordered_at",
                  "canceled_at"
                ]
              }
            },
            "conditions": {
              "type": "array",
              "items": {
                "type": "object",
                "properties": {
                  "column": {
                    "type": "string"
                  },
                  "operator": {
                    "type": "string",
                    "enum": ["=", ">", "<", ">=", "<=", "!="]
                  },
                  "value": {
                    "anyOf": [
                      {
                        "type": "string"
                      },
                      {
                        "type": "number"
                      },
                      {
                        "type": "object",
                        "properties": {
                          "column_name": {
                            "type": "string"
                          }
                        },
                        "required": ["column_name"],
                        "additionalProperties": false
                      }
                    ]
                  }
                },
                "required": ["column", "operator", "value"],
                "additionalProperties": false
              }
            },
            "order_by": {
              "type": "string",
              "enum": ["asc", "desc"]
            }
          },
          "required": ["table_name", "columns", "conditions", "order_by"],
          "additionalProperties": false
        }
      }
    }
  ]
}'

Skema dan batasan yang didukung

Output terstruktur Azure OpenAI mendukung subset Skema JSON yang sama dengan OpenAI.

Jenis yang didukung

  • String
  • Number
  • Boolean
  • Bilangan bulat
  • Objek
  • Array
  • Enum
  • anyOf

Catatan

Objek akar tidak boleh berjenis anyOf .

Semua bidang harus diperlukan

Semua bidang atau parameter fungsi harus disertakan sesuai kebutuhan. Dalam contoh di bawah ini location, dan unit keduanya ditentukan di bawah "required": ["location", "unit"].

{
    "name": "get_weather",
    "description": "Fetches the weather in the given location",
    "strict": true,
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The location to get the weather for"
            },
            "unit": {
                "type": "string",
                "description": "The unit to return the temperature in",
                "enum": ["F", "C"]
            }
        },
        "additionalProperties": false,
        "required": ["location", "unit"]
    }

Jika diperlukan, dimungkinkan untuk meniru parameter opsional dengan menggunakan jenis serikat dengan null. Dalam contoh ini, ini dicapai dengan baris "type": ["string", "null"],.

{
    "name": "get_weather",
    "description": "Fetches the weather in the given location",
    "strict": true,
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The location to get the weather for"
            },
            "unit": {
                "type": ["string", "null"],
                "description": "The unit to return the temperature in",
                "enum": ["F", "C"]
            }
        },
        "additionalProperties": false,
        "required": [
            "location", "unit"
        ]
    }
}

Kedalaman berlapis

Skema mungkin memiliki total hingga 100 properti objek, dengan hingga lima tingkat bersarang

additionalProperties: false harus selalu diatur dalam objek

Properti ini mengontrol apakah objek dapat memiliki pasangan nilai kunci tambahan yang tidak ditentukan dalam Skema JSON. Untuk menggunakan output terstruktur, Anda harus mengatur nilai ini ke false.

Pengurutan kunci

Output terstruktur diurutkan sama dengan skema yang disediakan. Untuk mengubah urutan output, ubah urutan skema yang Anda kirim sebagai bagian dari permintaan inferensi Anda.

Kata kunci khusus jenis yang tidak didukung

Jenis Kata Kunci yang Tidak Didukung
String minlength
maxLength
pola
format
Number minimum
maksimum
multipleOf
Objek patternProperties
unevaluatedProperties
propertyNames
minProperties
maxProperties
Larik unevaluatedItems
Berisi
minContains
maxContains
minItems
maxItems
uniqueItems

Skema berlapis menggunakan anyOf harus mematuhi subset Skema JSON secara keseluruhan

Contoh skema yang didukung anyOf :

{
    "type": "object",
    "properties": {
        "item": {
            "anyOf": [
                {
                    "type": "object",
                    "description": "The user object to insert into the database",
                    "properties": {
                        "name": {
                            "type": "string",
                            "description": "The name of the user"
                        },
                        "age": {
                            "type": "number",
                            "description": "The age of the user"
                        }
                    },
                    "additionalProperties": false,
                    "required": [
                        "name",
                        "age"
                    ]
                },
                {
                    "type": "object",
                    "description": "The address object to insert into the database",
                    "properties": {
                        "number": {
                            "type": "string",
                            "description": "The number of the address. Eg. for 123 main st, this would be 123"
                        },
                        "street": {
                            "type": "string",
                            "description": "The street name. Eg. for 123 main st, this would be main st"
                        },
                        "city": {
                            "type": "string",
                            "description": "The city of the address"
                        }
                    },
                    "additionalProperties": false,
                    "required": [
                        "number",
                        "street",
                        "city"
                    ]
                }
            ]
        }
    },
    "additionalProperties": false,
    "required": [
        "item"
    ]
}

Definisi didukung

Contoh yang didukung:

{
    "type": "object",
    "properties": {
        "steps": {
            "type": "array",
            "items": {
                "$ref": "#/$defs/step"
            }
        },
        "final_answer": {
            "type": "string"
        }
    },
    "$defs": {
        "step": {
            "type": "object",
            "properties": {
                "explanation": {
                    "type": "string"
                },
                "output": {
                    "type": "string"
                }
            },
            "required": [
                "explanation",
                "output"
            ],
            "additionalProperties": false
        }
    },
    "required": [
        "steps",
        "final_answer"
    ],
    "additionalProperties": false
}

Skema rekursif didukung

Contoh menggunakan # untuk rekursi akar:

{
        "name": "ui",
        "description": "Dynamically generated UI",
        "strict": true,
        "schema": {
            "type": "object",
            "properties": {
                "type": {
                    "type": "string",
                    "description": "The type of the UI component",
                    "enum": ["div", "button", "header", "section", "field", "form"]
                },
                "label": {
                    "type": "string",
                    "description": "The label of the UI component, used for buttons or form fields"
                },
                "children": {
                    "type": "array",
                    "description": "Nested UI components",
                    "items": {
                        "$ref": "#"
                    }
                },
                "attributes": {
                    "type": "array",
                    "description": "Arbitrary attributes for the UI component, suitable for any element",
                    "items": {
                        "type": "object",
                        "properties": {
                            "name": {
                                "type": "string",
                                "description": "The name of the attribute, for example onClick or className"
                            },
                            "value": {
                                "type": "string",
                                "description": "The value of the attribute"
                            }
                        },
                      "additionalProperties": false,
                      "required": ["name", "value"]
                    }
                }
            },
            "required": ["type", "label", "children", "attributes"],
            "additionalProperties": false
        }
    }

Contoh rekursi eksplisit:

{
    "type": "object",
    "properties": {
        "linked_list": {
            "$ref": "#/$defs/linked_list_node"
        }
    },
    "$defs": {
        "linked_list_node": {
            "type": "object",
            "properties": {
                "value": {
                    "type": "number"
                },
                "next": {
                    "anyOf": [
                        {
                            "$ref": "#/$defs/linked_list_node"
                        },
                        {
                            "type": "null"
                        }
                    ]
                }
            },
            "additionalProperties": false,
            "required": [
                "next",
                "value"
            ]
        }
    },
    "additionalProperties": false,
    "required": [
        "linked_list"
    ]
}