Memantau biaya pekerjaan dengan tabel sistem
Penting
Tabel sistem ini ada di Pratinjau Umum. Untuk mengakses tabel, skema harus diaktifkan di katalog Anda system
. Untuk informasi selengkapnya, lihat Mengaktifkan skema tabel sistem.
Artikel ini memberi Anda contoh cara menggunakan tabel sistem untuk memantau biaya pekerjaan di akun Anda.
Kueri ini hanya menghitung biaya untuk pekerjaan yang dijalankan pada komputasi pekerjaan dan komputasi tanpa server. Pekerjaan yang berjalan di gudang SQL dan komputasi serba guna tidak ditagih sebagai pekerjaan dan dengan demikian dikecualikan dari atribusi biaya.
Catatan
Kueri ini tidak akan mengembalikan rekaman dari ruang kerja di luar wilayah cloud ruang kerja Anda saat ini. Untuk memantau biaya pekerjaan dari ruang kerja di luar wilayah Anda saat ini, jalankan kueri ini di ruang kerja yang disebarkan di wilayah tersebut.
Dasbor pengamatan biaya
Untuk membantu Anda mulai memantau biaya pekerjaan Anda, unduh dasbor pengamatan biaya berikut dari Github. Lihat Dasbor biaya pekerjaan dan pengamatan kesehatan.
Setelah Anda mengunduh file JSON, impor dasbor ke ruang kerja Anda. Untuk petunjuk tentang mengimpor dasbor, lihat Mengimpor file dasbor.
Pekerjaan dengan perubahan pengeluaran tertinggi selama 7 hingga 14 hari terakhir
Kueri ini mengidentifikasi pekerjaan mana yang memiliki peningkatan tertinggi dalam pengeluaran biaya daftar selama 2 minggu terakhir.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.usage_metadata.job_id as job_id,
t1.identity_metadata.run_as as run_as,
t1.usage_quantity * list_prices.pricing.default AS list_cost
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices
ON
t1.cloud = list_prices.cloud AND
t1.sku_name = list_prices.sku_name AND
t1.usage_start_time >= list_prices.price_start_time AND
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is NULL)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_metadata.job_id IS NOT NULL AND
t1.usage_metadata.job_run_id IS NOT NULL AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 14 DAY
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name
,t1.workspace_id
,t1.job_id
,t1.sku_name
,t1.run_as
,Last7DaySpend
,Last14DaySpend
,last7DaySpend - last14DaySpend as Last7DayGrowth
,try_divide( (last7DaySpend - last14DaySpend) , last14DaySpend) * 100 AS Last7DayGrowthPct
FROM
(
SELECT
workspace_id,
job_id,
run_as,
sku_name,
SUM(list_cost) AS spend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -8) AND date_add(current_date(), -1) THEN list_cost ELSE 0 END) AS Last7DaySpend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -15) AND date_add(current_date(), -8) THEN list_cost ELSE 0 END) AS Last14DaySpend
FROM job_run_timeline_with_cost
GROUP BY ALL
) t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
ORDER BY
Last7DayGrowth DESC
LIMIT 100
Pekerjaan termahal dari 30 hari terakhir
Kueri ini mengidentifikasi pekerjaan dengan pengeluaran tertinggi dari 30 hari terakhir.
with list_cost_per_job as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
COUNT(DISTINCT t1.usage_metadata.job_run_id) as runs,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%'
AND t1.usage_metadata.job_id IS NOT NULL
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name,
t1.job_id,
t1.workspace_id,
t1.runs,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Pekerjaan termahal berjalan dari 30 hari terakhir
Kueri ini mengidentifikasi pekerjaan yang dijalankan dengan pengeluaran tertinggi dari 30 hari terakhir.
with list_cost_per_job_run as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
t1.usage_metadata.job_run_id as run_id,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%'
AND t1.usage_metadata.job_id IS NOT NULL
AND t1.usage_metadata.job_run_id IS NOT NULL
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t1.workspace_id,
t2.name,
t1.job_id,
t1.run_id,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job_run t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Pekerjaan dengan kegagalan yang sering dan mahal
Kueri ini mengembalikan informasi tentang pekerjaan dengan jumlah eksekusi gagal yang tinggi selama 30 hari terakhir. Anda dapat melihat jumlah eksekusi, jumlah kegagalan, rasio keberhasilan, dan biaya daftar eksekusi pekerjaan yang gagal.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.identity_metadata.run_as as run_as,
t2.job_id,
t2.run_id,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_status_agg as (
SELECT
workspace_id,
job_id,
FIRST(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state IN ('ERROR', 'FAILED', 'TIMED_OUT')
GROUP BY ALL
),
terminal_statues as (
SELECT
workspace_id,
job_id,
CASE WHEN result_state IN ('ERROR', 'FAILED', 'TIMED_OUT') THEN 1 ELSE 0 END as is_failure,
period_end_time as last_seen_date
FROM system.lakeflow.job_run_timeline
WHERE
result_state IS NOT NULL AND
period_end_time >= CURRENT_DATE() - INTERVAL 30 DAYS
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
first(t2.name) as name,
t1.workspace_id,
t1.job_id,
COUNT(*) as runs,
t3.run_as,
SUM(is_failure) as failures,
(1 - COALESCE(try_divide(SUM(is_failure), COUNT(*)), 0)) * 100 as success_ratio,
first(t3.list_cost) as failure_list_cost,
MAX(t1.last_seen_date) as last_seen_date
FROM terminal_statues t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
LEFT JOIN cost_per_status_agg t3 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY failures DESC
Pekerjaan dengan jumlah percobaan ulang tertinggi
Kueri ini mengembalikan informasi tentang pekerjaan dengan perbaikan yang sering selama 30 hari terakhir, termasuk jumlah perbaikan, biaya eksekusi perbaikan, dan durasi kumulatif dari perbaikan yang dijalankan.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t2.job_id,
t2.run_id,
t1.identity_metadata.run_as as run_as,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_unsuccesful_status_agg as (
SELECT
workspace_id,
job_id,
run_id,
first(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state != "SUCCEEDED"
GROUP BY ALL
),
repaired_runs as (
SELECT
workspace_id, job_id, run_id, COUNT(*) as cnt
FROM system.lakeflow.job_run_timeline
WHERE result_state IS NOT NULL
GROUP BY ALL
HAVING cnt > 1
),
successful_repairs as (
SELECT t1.workspace_id, t1.job_id, t1.run_id, MAX(t1.period_end_time) as period_end_time
FROM system.lakeflow.job_run_timeline t1
JOIN repaired_runs t2
ON t1.workspace_id=t2.workspace_id AND t1.job_id=t2.job_id AND t1.run_id=t2.run_id
WHERE t1.result_state="SUCCEEDED"
GROUP BY ALL
),
combined_repairs as (
SELECT
t1.*,
t2.period_end_time,
t1.cnt as repairs
FROM repaired_runs t1
LEFT JOIN successful_repairs t2 USING (workspace_id, job_id, run_id)
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
last(t3.name) as name,
t1.workspace_id,
t1.job_id,
t1.run_id,
first(t4.run_as, TRUE) as run_as,
first(t1.repairs) - 1 as repairs,
first(t4.list_cost) as repair_list_cost,
CASE WHEN t1.period_end_time IS NOT NULL THEN CAST(t1.period_end_time - MIN(t2.period_end_time) as LONG) ELSE NULL END AS repair_time_seconds
FROM combined_repairs t1
JOIN system.lakeflow.job_run_timeline t2 USING (workspace_id, job_id, run_id)
LEFT JOIN most_recent_jobs t3 USING (workspace_id, job_id)
LEFT JOIN cost_per_unsuccesful_status_agg t4 USING (workspace_id, job_id, run_id)
WHERE
t2.result_state IS NOT NULL
GROUP BY t1.workspace_id, t1.job_id, t1.run_id, t1.period_end_time
ORDER BY repairs DESC