Catatan
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba masuk atau mengubah direktori.
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba mengubah direktori.
Nilai <expression> dari tipe <sourceType> tidak dapat diubah menjadi <targetType> karena salah format.
Koreksi nilai sesuai sintaks, atau ubah jenis targetnya.
Gunakan try_cast untuk mentolerir input cacat dan mengembalikan NULL sebagai gantinya.
Jika perlu atur <ansiConfig> ke "false" untuk melewati kesalahan ini.
Parameters
-
ekspresi: Ekspresi yang perlu dikonversi ke
targettype -
sourceType: Jenis data dari
expression. - targetType: Jenis tipe target dalam operasi pemeranan.
- ansiConfig: Pengaturan konfigurasi untuk mengubah mode ANSI.
Penjelasan
expression tidak dapat dilemparkan ke targetType karena salah satu alasan berikut:
-
expressionterlalu besar untuk domain jenis tersebut. Misalnya angka1000tidak dapat ditransmisian keTINYINTkarena domain tersebut hanya berkisar dari-128hingga+127. -
expressionberisi simbol yang tidak termasuk dalam tipe. Misalnyaatidak dapat ditransmisikan ke jenis numerik apa pun. -
expressiondiformat dengan cara yang tidak dapat diurai oleh operasi casting. Misalnya1.0dan1e1tidak dapat ditransmisikan ke jenis numerik integral apa pun.
Pemeran mungkin belum ditentukan secara eksplisit, tetapi mungkin telah disuntikkan secara implisit oleh Azure Databricks.
Informasi konteks yang diberikan dengan kesalahan ini mengisolasi objek dan ekspresi tempat kesalahan terjadi.
Untuk definisi domain dan format harfiah yang diterima, lihat definisi untuk jenis datatyopeName.
Mitigasi
Mitigasi untuk kesalahan ini tergantung pada penyebabnya:
Apakah
valuediharapkan untuk mematuhi domain dan formattypeNameyang ditentukan?Verifikasi nilai produksi input dan perbaik sumber data.
Apakah target dari pemetaan terlalu spesifik?
Luaskan jenis dengan memindahkan, misalnya, dari
DATEkeTIMESTAMP,INTkeBIGINTatauDOUBLE.Apakah format
valuesalah?Pertimbangkan untuk menggunakan:
Fungsi-fungsi ini memungkinkan berbagai format yang dapat Anda tentukan.
Saat mentransmisikan literal numerik dengan titik desimal (misalnya
1.0atau notasi ilmiah (misalnya1e0) pertimbangkan transmisi ganda terlebih dahulu keDECIMALatauDOUBLEdan kemudian ke numerik yang tepat.Apakah data dengan nilai yang salah diharapkan, dan harus ditoleransi dengan menghasilkan NULL?
Ubah penggunaan ekspresi atau suntikan try_cast(value AS typeName). Fungsi ini mengembalikan
NULLketika diteruskan tanpavalueyang memenuhi tipe.Jika Anda tidak dapat mengubah ekspresi, sebagai upaya terakhir, Anda dapat menonaktifkan mode ANSI untuk sementara menggunakan
ansiConfig.
Contoh
-- A view with a cast and string literals outside the domain of the target type
> CREATE OR REPLACE TEMPORARY VIEW v(c1) AS SELECT CAST(a AS SMALLINT) FROM VALUES('100'), ('50000') AS t(a);
> SELECT c1 FROM v;
[CAST_INVALID_INPUT] The value '50000' of the type "STRING" cannot be cast to "SMALLINT" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL of VIEW v(line 1, position 8) ==
SELECT CAST(a AS SMALLINT) FROM VALUES('100'), ('50000') A...
^^^^^^^^^^^^^^^^^^^
-- Widen the target type to match the domain of the input
> CREATE OR REPLACE TEMPORARY VIEW v(c1) AS SELECT cast(a AS INTEGER) FROM VALUES('100'), ('50000') AS t(a);
> SELECT c1 FROM v;
100
50000
-- The input data format does not match the target type
> SELECT cast(a AS INTEGER) FROM VALUES('1.0'), ('1e0') AS t(a);
[CAST_INVALID_INPUT] The value '1.0' of the type "STRING" cannot be cast to "INT" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL(line 1, position 8) ==
SELECT cast(a AS INTEGER) FROM VALUES('1.0'), ('1e0') AS ...
^^^^^^^^^^^^^^^^^^
-- Adjust the target type to the match the format if the format is indicative of the domain.
> SELECT cast(a AS DOUBLE) FROM VALUES('1.0'), ('1e0') AS t(a);
1.0
1.0
-- ALternatively double cast to preserver the target type
> SELECT cast(cast(a AS DOUBLE) AS INTEGER) FROM VALUES('1.0'), ('1e0') AS t(a);
1
1
-- The format of the numeric input contains display artifacts
> SELECT cast(a AS DECIMAL(10, 3)) FROM VALUES('12,345.30-'), ('12+') AS t(a);
[CAST_INVALID_INPUT] The value '12,345.30-' of the type "STRING" cannot be cast to "DECIMAL(10,3)" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL(line 1, position 8) ==
SELECT cast(a AS DECIMAL(10, 3)) FROM VALUES('$<123,45.30>'), ('...
^^^^^^^^^^^^^^^^^^^^^^^^^
-- Use to_number() to parse formatted values
> SELECT to_number(a, '9,999,999.999S') FROM VALUES('123,45.30-'), ('12+') AS t(a);
-12345.300
12.000
-- The format of a date input does not match the default format
> SELECT cast(geburtsdatum AS DATE) FROM VALUES('6.6.2000'), ('31.10.1970') AS t(geburtsdatum);
[CAST_INVALID_INPUT] The value '6.6.2000' of the type "STRING" cannot be cast to "DATE" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL(line 1, position 8) ==
SELECT cast(geburtsdatum AS DATE) FROM VALUES('6.6.2000'), ('31.1...
^^^^^^^^^^^^^^^^^^^^^^^^^^
-- Use to_date to parse the correct input format for a date
> SELECT to_date(geburtsdatum, 'dd.MM.yyyy') FROM VALUES('6.6.2000'), ('31.10.1970') AS t(geburtsdatum);
2000-06-06
1970-10-31
-- The type resolution of Databricks did not derive a sufficiently wide type, failing an implicit cast
> SELECT 12 * monthly AS yearly FROM VALUES ('1200'), ('1520.56') AS t(monthly);
[CAST_INVALID_INPUT] The value '1520.56' of the type "STRING" cannot be cast to "BIGINT" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL(line 1, position 8) ==
SELECT 12 * monthly AS yearly FROM VALUES ('1200'),...
^^^^^^^^^^^^
-- Explicitly declare the expected type
> SELECT 12 * cast(monthly AS DECIMAL(8, 2)) AS yearly FROM VALUES ('1200'), ('1520.56') AS t(monthly);
14400.00
18246.72
-- The input data is occasionally expected to incorrect
> SELECT cast(salary AS DECIMAL(9, 2)) FROM VALUES('30000'), ('prefer not to say') AS t(salary);
[CAST_INVALID_INPUT] The value 'prefer not to say' of the type "STRING" cannot be cast to "DECIMAL(9,2)" because it is malformed.
Correct the value as per the syntax, or change its target type. Use `try_cast` to tolerate malformed input and return NULL instead.
If necessary set "spark.sql.ansi.enabled" to "false" to bypass this error.
== SQL(line 1, position 8) ==
SELECT cast(salary AS DECIMAL(9, 2)) FROM VALUES('30000'), ('prefer ...
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-- Use try_cast to tolerate incorrect input
> SELECT try_cast(salary AS DECIMAL(9, 2)) FROM VALUES('30000'), ('prefer not to say') AS t(salary);
30000.00
NULL
-- In Databricks SQL temporarily disable ANSI mode to tolerate incorrect input.
> SET ANSI_MODE = false;
> SELECT cast(salary AS DECIMAL(9, 2)) FROM VALUES('30000'), ('prefer not to say') AS t(salary);
30000.00
NULL
> SET ANSI_MODE = true;
-- In Databricks Runtime temporarily disable ANSI mode to tolerate incorrect input.
> SET spark.sql.ansi.enabled = false;
> SELECT cast(salary AS DECIMAL(9, 2)) FROM VALUES('30000'), ('prefer not to say') AS t(salary);
30000.00
NULL
> SET spark.sql.ansi.enabled = true;