StandardTrainersCatalog.AveragedPerceptron Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Overload
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options) |
AveragedPerceptronTrainer Buat dengan opsi tingkat lanjut, yang memprediksi target menggunakan model klasifikasi biner linier yang dilatih melalui data label boolean. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32) |
AveragedPerceptronTrainerBuat , yang memprediksi target menggunakan model klasifikasi biner linier yang dilatih melalui data label boolean. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options)
AveragedPerceptronTrainer Buat dengan opsi tingkat lanjut, yang memprediksi target menggunakan model klasifikasi biner linier yang dilatih melalui data label boolean.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options options);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As AveragedPerceptronTrainer.Options) As AveragedPerceptronTrainer
Parameter
Objek pelatih katalog klasifikasi biner.
Opsi pelatih.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptronWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new AveragedPerceptronTrainer.Options
{
LossFunction = new SmoothedHingeLoss(),
LearningRate = 0.1f,
LazyUpdate = false,
RecencyGain = 0.1f,
NumberOfIterations = 10
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.89
// AUC: 0.96
// F1 Score: 0.88
// Negative Precision: 0.87
// Negative Recall: 0.92
// Positive Precision: 0.91
// Positive Recall: 0.85
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Berlaku untuk
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
AveragedPerceptronTrainerBuat , yang memprediksi target menggunakan model klasifikasi biner linier yang dilatih melalui data label boolean.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 10);
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 1);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * Microsoft.ML.Trainers.IClassificationLoss * single * bool * single * int -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 10) As AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 1) As AveragedPerceptronTrainer
Parameter
Objek pelatih katalog klasifikasi biner.
- featureColumnName
- String
Nama kolom fitur. Data kolom harus merupakan vektor berukuran besar yang diketahui dari Single.
- lossFunction
- IClassificationLoss
Fungsi kerugian diminimalkan dalam proses pelatihan. Jika null
, HingeLoss akan digunakan dan mengarah ke pelatih perceptron rata-rata margin maks.
- learningRate
- Single
Tingkat pembelajaran awal yang digunakan oleh SGD.
- decreaseLearningRate
- Boolean
true
untuk mengurangi kemajuan perulangan learningRate
; jika tidak, false
.
Defaultnya adalah false
.
- l2Regularization
- Single
Berat L2 untuk regularisasi.
- numberOfIterations
- Int32
Jumlah yang melewati himpunan data pelatihan.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptron
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: False
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.72
// AUC: 0.79
// F1 Score: 0.68
// Negative Precision: 0.71
// Negative Recall: 0.80
// Positive Precision: 0.74
// Positive Recall: 0.63
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}