StandardTrainersCatalog.SgdNonCalibrated Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Overload
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdNonCalibratedTrainer+Options) |
Buat SgdNonCalibratedTrainer dengan opsi tingkat lanjut, yang memprediksi target menggunakan model klasifikasi linier. Penurunan gradien stochastic (SGD) adalah algoritma berulang yang mengoptimalkan fungsi tujuan yang dapat dibedakan. |
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, IClassificationLoss, Int32, Double, Single) |
Buat SgdNonCalibratedTrainer, yang memprediksi target menggunakan model klasifikasi linier. Penurunan gradien stochastic (SGD) adalah algoritma berulang yang mengoptimalkan fungsi tujuan yang dapat dibedakan. |
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdNonCalibratedTrainer+Options)
Buat SgdNonCalibratedTrainer dengan opsi tingkat lanjut, yang memprediksi target menggunakan model klasifikasi linier. Penurunan gradien stochastic (SGD) adalah algoritma berulang yang mengoptimalkan fungsi tujuan yang dapat dibedakan.
public static Microsoft.ML.Trainers.SgdNonCalibratedTrainer SgdNonCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.SgdNonCalibratedTrainer.Options options);
static member SgdNonCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.SgdNonCalibratedTrainer.Options -> Microsoft.ML.Trainers.SgdNonCalibratedTrainer
<Extension()>
Public Function SgdNonCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As SgdNonCalibratedTrainer.Options) As SgdNonCalibratedTrainer
Parameter
Objek pelatih katalog klasifikasi biner.
- options
- SgdNonCalibratedTrainer.Options
Opsi pelatih.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class SgdNonCalibratedWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new SgdNonCalibratedTrainer.Options
{
LearningRate = 0.01,
NumberOfIterations = 10,
L2Regularization = 1e-7f
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.SgdNonCalibrated(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: False
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.59
// AUC: 0.61
// F1 Score: 0.41
// Negative Precision: 0.57
// Negative Recall: 0.85
// Positive Precision: 0.64
// Positive Recall: 0.30
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 137 | 101 | 0.5756
// negative || 118 | 144 | 0.5496
// ||======================
// Precision || 0.5373 | 0.5878 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Berlaku untuk
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, IClassificationLoss, Int32, Double, Single)
Buat SgdNonCalibratedTrainer, yang memprediksi target menggunakan model klasifikasi linier. Penurunan gradien stochastic (SGD) adalah algoritma berulang yang mengoptimalkan fungsi tujuan yang dapat dibedakan.
public static Microsoft.ML.Trainers.SgdNonCalibratedTrainer SgdNonCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, int numberOfIterations = 20, double learningRate = 0.01, float l2Regularization = 1E-06);
static member SgdNonCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * Microsoft.ML.Trainers.IClassificationLoss * int * double * single -> Microsoft.ML.Trainers.SgdNonCalibratedTrainer
<Extension()>
Public Function SgdNonCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional lossFunction As IClassificationLoss = Nothing, Optional numberOfIterations As Integer = 20, Optional learningRate As Double = 0.01, Optional l2Regularization As Single = 1E-06) As SgdNonCalibratedTrainer
Parameter
Objek pelatih katalog klasifikasi biner.
- featureColumnName
- String
Fitur, atau variabel independen. Data kolom harus merupakan vektor berukuran besar yang diketahui dari Single.
- exampleWeightColumnName
- String
Nama kolom bobot contoh (opsional).
- lossFunction
- IClassificationLoss
Fungsi kerugian diminimalkan dalam proses pelatihan. Menggunakan, misalnya, HingeLoss mengarah ke pelatih mesin vektor dukungan.
- numberOfIterations
- Int32
Jumlah maksimum melewati himpunan data pelatihan; atur ke 1 untuk mensimulasikan pembelajaran online.
- learningRate
- Double
Tingkat pembelajaran awal yang digunakan oleh SGD.
- l2Regularization
- Single
Berat L2 untuk regularisasi.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class SgdNonCalibrated
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.SgdNonCalibrated();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: False
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.60
// AUC: 0.63
// F1 Score: 0.43
// Negative Precision: 0.58
// Negative Recall: 0.85
// Positive Precision: 0.66
// Positive Recall: 0.32
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 76 | 162 | 0.3193
// negative || 42 | 220 | 0.8397
// ||======================
// Precision || 0.6441 | 0.5759 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}