Bagikan melalui


PretrainedTreeFeaturizationEstimator Kelas

Definisi

IEstimator<TTransformer> Yang berisi pra-terlatih TreeEnsembleModelParameters dan memanggilnya Fit(IDataView) menghasilkan featurizer berdasarkan model yang telah dilatih sebelumnya.

public sealed class PretrainedTreeFeaturizationEstimator : Microsoft.ML.Trainers.FastTree.TreeEnsembleFeaturizationEstimatorBase
type PretrainedTreeFeaturizationEstimator = class
    inherit TreeEnsembleFeaturizationEstimatorBase
Public NotInheritable Class PretrainedTreeFeaturizationEstimator
Inherits TreeEnsembleFeaturizationEstimatorBase
Warisan
PretrainedTreeFeaturizationEstimator

Keterangan

Kolom Input dan Output

Data kolom label input harusSingle. Data kolom fitur input harus menjadi vektor berukuran besar yangSingle diketahui.

Estimator ini menghasilkan kolom berikut:

Nama Kolom Output Jenis Kolom Deskripsi
Trees Vektor dariSingle Nilai output semua pohon.
Leaves Vektor dari Single ID dari semua daun tempat vektor fitur input jatuh ke dalamnya.
Paths Vektor dari Single Jalur yang dilalui vektor fitur input untuk mencapai daun.

Kolom output tersebut semuanya opsional dan pengguna dapat mengubah namanya. Atur nama kolom yang dilewati ke null agar tidak diproduksi.

Detail Prediksi

Estimator ini menghasilkan beberapa kolom output dari model ansambel pohon. Asumsikan bahwa model hanya berisi satu pohon keputusan:

               Node 0
               /    \
             /        \
           /            \
         /                \
       Node 1            Node 2
       /    \            /    \
     /        \        /        \
   /            \     Leaf -3  Node 3
  Leaf -1      Leaf -2         /    \
                             /        \
                            Leaf -4  Leaf -5

Asumsikan bahwa vektor fitur input termasuk dalam Leaf -1. Outputnya Trees mungkin vektor 1 elemen di mana satu-satunya nilai adalah nilai keputusan yang dibawa oleh Leaf -1. Outputnya Leaves adalah vektor 0-1. Jika daun yang dicapai adalah $i$-th (diindeks oleh $-(i+1)$ sehingga daun pertama adalah Leaf -1) daun di pohon, nilai $i$-th di Leaves adalah 1 dan semua nilai lainnya adalah 0. Output Paths adalah representasi 0-1 dari simpul yang diteruskan sebelum mencapai daun. Elemen $i$-th di Paths menunjukkan apakah simpul $i$-th (diindeks oleh $i$) disentuh. Misalnya, mencapai Leaf -1 mengarah ke $[1, 1, 0, 0]$ sebagai Paths. Jika ada beberapa pohon, estimator ini hanya TreesLeavesPathsmenggabungkan dari semua pohon (informasi pohon pertama datang pertama dalam vektor yang digabungkan).

Periksa bagian Lihat Juga untuk tautan ke contoh penggunaan.

Metode

Fit(IDataView)

TreeEnsembleModelParameters Menghasilkan yang memetakan kolom yang dipanggil InputColumnNameinput ke tiga kolom output.

(Diperoleh dari TreeEnsembleFeaturizationEstimatorBase)
GetOutputSchema(SchemaShape)

PretrainedTreeFeaturizationEstimator menambahkan tiga kolom float-vektor ke dalam inputSchema. Mengingat kolom vektor fitur, kolom yang ditambahkan adalah nilai prediksi semua pohon, ID daun tempat vektor fitur jatuh, dan jalur ke daun tersebut.

(Diperoleh dari TreeEnsembleFeaturizationEstimatorBase)

Metode Ekstensi

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Tambahkan 'titik pemeriksaan penembolokan' ke rantai estimator. Ini akan memastikan bahwa estimator hilir akan dilatih terhadap data cache. Sangat membantu untuk memiliki titik pemeriksaan penembolokan sebelum pelatih yang mengambil beberapa data berlalu.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Mengingat estimator, kembalikan objek pembungkus yang akan memanggil delegasi setelah Fit(IDataView) dipanggil. Seringkali penting bagi estimator untuk mengembalikan informasi tentang apa yang cocok, itulah sebabnya Fit(IDataView) metode mengembalikan objek yang di ketik secara khusus, bukan hanya umum ITransformer. Namun, pada saat yang sama, IEstimator<TTransformer> sering dibentuk menjadi alur dengan banyak objek, jadi kita mungkin perlu membangun rantai estimator melalui EstimatorChain<TLastTransformer> tempat estimator yang kita inginkan agar transformator dikubur di suatu tempat dalam rantai ini. Untuk skenario itu, kita dapat melalui metode ini melampirkan delegasi yang akan dipanggil setelah fit dipanggil.

Berlaku untuk

Lihat juga