SgdNonCalibratedTrainer Kelas
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
IEstimator<TTransformer> untuk melatih regresi logistik menggunakan metode gradien stochastic paralel.
public sealed class SgdNonCalibratedTrainer : Microsoft.ML.Trainers.SgdBinaryTrainerBase<Microsoft.ML.Trainers.LinearBinaryModelParameters>
type SgdNonCalibratedTrainer = class
inherit SgdBinaryTrainerBase<LinearBinaryModelParameters>
Public NotInheritable Class SgdNonCalibratedTrainer
Inherits SgdBinaryTrainerBase(Of LinearBinaryModelParameters)
- Warisan
-
LinearTrainerBase<BinaryPredictionTransformer<TModel>,TModel>SgdNonCalibratedTrainer
Keterangan
Untuk membuat pelatih ini, gunakan SgdNonCalibrated atau SgdNonCalibrated(Options).
Kolom Input dan Output
Data kolom label input harus Boolean. Data kolom fitur input harus merupakan vektor berukuran besar yang diketahui dari Single. Pelatih ini menghasilkan kolom berikut:
Nama Kolom Output | Jenis Kolom | Deskripsi |
---|---|---|
Score |
Single | Skor tidak terikat yang dihitung oleh model. |
PredictedLabel |
Boolean | Label yang diprediksi, berdasarkan tanda skor. Skor negatif memetakan ke false dan skor positif memetakan ke true . |
Karakteristik Pelatih
Tugas pembelajaran mesin | Klasifikasi biner |
Apakah normalisasi diperlukan? | Ya |
Apakah penembolokan diperlukan? | Tidak |
NuGet yang diperlukan selain Microsoft.ML | Tidak ada |
Dapat diekspor ke ONNX | Ya |
Detail Algoritma Pelatihan
Stochastic Gradient Descent (SGD) adalah salah satu prosedur pengoptimalan stochastic populer yang dapat diintegrasikan ke dalam beberapa tugas pembelajaran mesin untuk mencapai performa canggih. Pelatih ini mengimplementasikan Hogwild Stochastic Gradient Descent untuk klasifikasi biner yang mendukung multi-threading tanpa penguncian apa pun. Jika masalah pengoptimalan terkait jarang terjadi, Hogwild Stochastic Gradient Descent mencapai tingkat konvergensi yang hampir optimal. Untuk detail selengkapnya tentang Hogwild Stochastic Gradient Descent dapat ditemukan di sini.
Periksa bagian Lihat Juga untuk tautan ke contoh penggunaan.
Bidang
FeatureColumn |
Kolom fitur yang diharapkan pelatih. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Kolom label yang diharapkan pelatih. Dapat berupa |
WeightColumn |
Kolom berat yang diharapkan pelatih. Dapat berupa |
Properti
Info |
IEstimator<TTransformer> untuk melatih regresi logistik menggunakan metode gradien stochastic paralel. (Diperoleh dari SgdBinaryTrainerBase<TModel>) |
Metode
Fit(IDataView, LinearModelParameters) |
Melanjutkan pelatihan menggunakan SdcaLogisticRegressionBinaryTrainer yang sudah dilatih |
Fit(IDataView) |
Melatih dan mengembalikan ITransformer. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer> untuk melatih regresi logistik menggunakan metode gradien stochastic paralel. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
Metode Ekstensi
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Tambahkan 'titik pemeriksaan penembolokan' ke rantai estimator. Ini akan memastikan bahwa estimator hilir akan dilatih terhadap data cache. Sangat membantu untuk memiliki titik pemeriksaan penembolokan sebelum pelatih yang mengambil beberapa data berlalu. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Mengingat estimator, kembalikan objek pembungkus yang akan memanggil delegasi setelah Fit(IDataView) dipanggil. Seringkali penting bagi estimator untuk mengembalikan informasi tentang apa yang cocok, itulah sebabnya Fit(IDataView) metode mengembalikan objek yang di ketik secara khusus, bukan hanya umum ITransformer. Namun, pada saat yang sama, IEstimator<TTransformer> sering dibentuk menjadi alur dengan banyak objek, jadi kita mungkin perlu membangun rantai estimator melalui EstimatorChain<TLastTransformer> di mana estimator yang ingin kita dapatkan transformator dimakamkan di suatu tempat dalam rantai ini. Untuk skenario itu, kita dapat melalui metode ini melampirkan delegasi yang akan dipanggil setelah fit dipanggil. |