HashSet<T>.Overlaps(IEnumerable<T>) Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Menentukan apakah objek saat ini HashSet<T> dan koleksi yang ditentukan berbagi elemen umum.
public:
virtual bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public:
bool Overlaps(System::Collections::Generic::IEnumerable<T> ^ other);
public bool Overlaps (System.Collections.Generic.IEnumerable<T> other);
abstract member Overlaps : seq<'T> -> bool
override this.Overlaps : seq<'T> -> bool
member this.Overlaps : seq<'T> -> bool
Public Function Overlaps (other As IEnumerable(Of T)) As Boolean
Parameter
- other
- IEnumerable<T>
Koleksi untuk dibandingkan dengan objek saat ini HashSet<T> .
Mengembalikan
true
HashSet<T> jika objek dan other
berbagi setidaknya satu elemen umum; jika tidak, false
.
Penerapan
Pengecualian
other
adalah null
.
Contoh
Contoh berikut membuat dua objek yang berbeda HashSet<T> dan membandingkannya satu sama lain. Dalam contoh ini, allNumbers
dan lowNumbers
ditunjukkan untuk berbagi elemen umum menggunakan Overlaps metode .
HashSet<int> lowNumbers = new HashSet<int>();
HashSet<int> allNumbers = new HashSet<int>();
for (int i = 1; i < 5; i++)
{
lowNumbers.Add(i);
}
for (int i = 0; i < 10; i++)
{
allNumbers.Add(i);
}
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count);
DisplaySet(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("lowNumbers overlaps allNumbers: {0}",
lowNumbers.Overlaps(allNumbers));
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
// Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers);
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count);
DisplaySet(allNumbers);
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}",
allNumbers.SetEquals(lowNumbers));
// Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}",
lowNumbers.IsSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}",
allNumbers.IsSupersetOf(lowNumbers));
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}",
lowNumbers.IsProperSubsetOf(allNumbers));
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}",
allNumbers.IsProperSupersetOf(lowNumbers));
void DisplaySet(HashSet<int> set)
{
Console.Write("{");
foreach (int i in set)
{
Console.Write(" {0}", i);
}
Console.WriteLine(" }");
}
/* This code example produces output similar to the following:
* lowNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
* lowNumbers overlaps allNumbers: True
* allNumbers and lowNumbers are equal sets: False
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: True
* allNumbers is a proper superset of lowNumbers: True
* allNumbers contains 4 elements: { 1 2 3 4 }
* allNumbers and lowNumbers are equal sets: True
* lowNumbers is a subset of allNumbers: True
* allNumbers is a superset of lowNumbers: True
* lowNumbers is a proper subset of allNumbers: False
* allNumbers is a proper superset of lowNumbers: False
*/
Shared Sub Main()
Dim lowNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
Dim allNumbers As HashSet(Of Integer) = New HashSet(Of Integer)()
For i As Integer = 1 To 4
lowNumbers.Add(i)
Next i
For i As Integer = 0 To 9
allNumbers.Add(i)
Next i
Console.Write("lowNumbers contains {0} elements: ", lowNumbers.Count)
DisplaySet(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("lowNumbers overlaps allNumbers: {0}", _
lowNumbers.Overlaps(allNumbers))
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
' Modify allNumbers to remove numbers that are not in lowNumbers.
allNumbers.IntersectWith(lowNumbers)
Console.Write("allNumbers contains {0} elements: ", allNumbers.Count)
DisplaySet(allNumbers)
Console.WriteLine("allNumbers and lowNumbers are equal sets: {0}", _
allNumbers.SetEquals(lowNumbers))
' Show the results of sub/superset testing with the modified set.
Console.WriteLine("lowNumbers is a subset of allNumbers: {0}", _
lowNumbers.IsSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a superset of lowNumbers: {0}", _
allNumbers.IsSupersetOf(lowNumbers))
Console.WriteLine("lowNumbers is a proper subset of allNumbers: {0}", _
lowNumbers.IsProperSubsetOf(allNumbers))
Console.WriteLine("allNumbers is a proper superset of lowNumbers: {0}", _
allNumbers.IsProperSupersetOf(lowNumbers))
End Sub
' This code example produces output similar to the following:
' lowNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers contains 10 elements: { 0 1 2 3 4 5 6 7 8 9 }
' lowNumbers overlaps allNumbers: True
' allNumbers and lowNumbers are equal sets: False
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: True
' allNumbers is a proper superset of lowNumbers: True
' allNumbers contains 4 elements: { 1 2 3 4 }
' allNumbers and lowNumbers are equal sets: True
' lowNumbers is a subset of allNumbers: True
' allNumbers is a superset of lowNumbers: True
' lowNumbers is a proper subset of allNumbers: False
' allNumbers is a proper superset of lowNumbers: False
Keterangan
Metode ini adalah operasi O(n
), di mana n
adalah jumlah elemen dalam other
.