Edit

Bagikan melalui


Tuple<T1,T2,T3,T4,T5,T6>.IStructuralComparable.CompareTo Method

Definition

Compares the current Tuple<T1,T2,T3,T4,T5,T6> object to a specified object by using a specified comparer and returns an integer that indicates whether the current object is before, after, or in the same position as the specified object in the sort order.

 virtual int System.Collections.IStructuralComparable.CompareTo(System::Object ^ other, System::Collections::IComparer ^ comparer) = System::Collections::IStructuralComparable::CompareTo;
int IStructuralComparable.CompareTo (object other, System.Collections.IComparer comparer);
abstract member System.Collections.IStructuralComparable.CompareTo : obj * System.Collections.IComparer -> int
override this.System.Collections.IStructuralComparable.CompareTo : obj * System.Collections.IComparer -> int
Function CompareTo (other As Object, comparer As IComparer) As Integer Implements IStructuralComparable.CompareTo

Parameters

other
Object

An object to compare with the current instance.

comparer
IComparer

An object that provides custom rules for comparison.

Returns

A signed integer that indicates the relative position of this instance and other in the sort order, as shown in the following table.

Value Description
A negative integer This instance precedes other.
Zero This instance and other have the same position in the sort order.
A positive integer This instance follows other.

Implements

Exceptions

Examples

The following example creates an array of Tuple<T1,T2,T3,T4,T5,T6> objects that contains population data for three U.S. cities from 1960 to 2000. The sextuple's first component is the city name. The remaining five components represent the population at 10-year intervals from 1960 to 2000.

The PopulationComparer class provides an IComparer implementation that allows the array of sextuples to be sorted by any one of its components. Two values are provided to the PopulationComparer class in its constructor: The position of the component that defines the sort order, and a Boolean value that indicates whether the tuple objects should be sorted in ascending or descending order.

The example then displays the elements in the array in unsorted order, sorts them by the third component (the population in 1970) and displays them, and then sorts them by the sixth component (the population in 2000) and displays them.

using System;
using System.Collections;
using System.Collections.Generic;

public class PopulationComparer<T1, T2, T3, T4, T5, T6> : IComparer
{
   private int itemPosition;
   private int multiplier = -1;

   public PopulationComparer(int component) : this(component, true)
   { }

   public PopulationComparer(int component, bool descending)
   {
      if (! descending) multiplier = 1;

      if (component <= 0 || component > 6)
         throw new ArgumentException("The component argument is out of range.");

      itemPosition = component;
   }

   public int Compare(object x, object y)
   {
      var tX = x as Tuple<T1, T2, T3, T4, T5, T6>;
      if (tX == null)
      {
         return 0;
      }
      else
      {
         var tY = y as Tuple<T1, T2, T3, T4, T5, T6>;
         switch (itemPosition)
         {
            case 1:
               return Comparer<T1>.Default.Compare(tX.Item1, tY.Item1) * multiplier;
            case 2:
               return Comparer<T2>.Default.Compare(tX.Item2, tY.Item2) * multiplier;
            case 3:
               return Comparer<T3>.Default.Compare(tX.Item3, tY.Item3) * multiplier;
            case 4:
               return Comparer<T4>.Default.Compare(tX.Item4, tY.Item4) * multiplier;
            case 5:
               return Comparer<T5>.Default.Compare(tX.Item5, tY.Item5) * multiplier;
            case 6:
               return Comparer<T6>.Default.Compare(tX.Item6, tY.Item6) * multiplier;
            default:
               return Comparer<T1>.Default.Compare(tX.Item1, tY.Item1) * multiplier;
         }
      }
   }
}

public class Example
{
   public static void Main()
   {
      // Create array of sextuple with population data for three U.S.
      // cities, 1960-2000.
      Tuple<string, int, int, int, int, int>[] cities =
           { Tuple.Create("Los Angeles", 2479015, 2816061, 2966850, 3485398, 3694820),
             Tuple.Create("New York", 7781984, 7894862, 7071639, 7322564, 8008278),
             Tuple.Create("Chicago", 3550904, 3366957, 3005072, 2783726, 2896016) };

      // Display array in unsorted order.
      Console.WriteLine("In unsorted order:");
      foreach (var city in cities)
         Console.WriteLine(city.ToString());
      Console.WriteLine();

      Array.Sort(cities, new PopulationComparer<string, int, int, int, int, int>(3));

      // Display array in sorted order.
      Console.WriteLine("Sorted by population in 1970:");
      foreach (var city in cities)
         Console.WriteLine(city.ToString());
      Console.WriteLine();

      Array.Sort(cities, new PopulationComparer<string, int, int, int, int, int>(6));

      // Display array in sorted order.
      Console.WriteLine("Sorted by population in 2000:");
      foreach (var city in cities)
         Console.WriteLine(city.ToString());
   }
}
// The example displays the following output:
//    In unsorted order:
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
//    
//    Sorted by population in 1970:
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    
//    Sorted by population in 2000:
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
open System
open System.Collections
open System.Collections.Generic

type PopulationComparer<'T1, 'T2, 'T3, 'T4, 'T5, 'T6>(comp, descending) =
    let multiplier = if descending then -1 else 1

    do 
        if comp <= 0 || comp > 6 then
            invalidArg "comp" "The component argument is out of range."

    new (comp) = PopulationComparer(comp, true)

    interface IComparer with
        member _.Compare(x, y) =
            match x with 
            | :? Tuple<'T1, 'T2, 'T3, 'T4, 'T5, 'T6> as tX ->
                let tY = y :?> Tuple<'T1, 'T2, 'T3, 'T4, 'T5, 'T6>
                match comp with
                | 1 ->
                    Comparer<'T1>.Default.Compare(tX.Item1, tY.Item1) * multiplier
                | 2 ->
                    Comparer<'T2>.Default.Compare(tX.Item2, tY.Item2) * multiplier
                | 3 ->
                    Comparer<'T3>.Default.Compare(tX.Item3, tY.Item3) * multiplier
                | 4 ->
                    Comparer<'T4>.Default.Compare(tX.Item4, tY.Item4) * multiplier
                | 5 ->
                    Comparer<'T5>.Default.Compare(tX.Item5, tY.Item5) * multiplier
                | 6 ->
                    Comparer<'T6>.Default.Compare(tX.Item6, tY.Item6) * multiplier
                | _ ->
                    Comparer<'T1>.Default.Compare(tX.Item1, tY.Item1) * multiplier
            | _ -> 0

// Create array of sextuple with population data for three U.S.
// cities, 1960-2000.
let cities =
    [| Tuple.Create("Los Angeles", 2479015, 2816061, 2966850, 3485398, 3694820)
       Tuple.Create("New York", 7781984, 7894862, 7071639, 7322564, 8008278)
       Tuple.Create("Chicago", 3550904, 3366957, 3005072, 2783726, 2896016) |]

// Display array in unsorted order.
printfn "In unsorted order:"
for city in cities do
    printfn $"{city}"
printfn ""

Array.Sort(cities, PopulationComparer<string, int, int, int, int, int> 3)

// Display array in sorted order.
printfn "Sorted by population in 1970:"
for city in cities do
    printfn $"{city}"
printfn ""

Array.Sort(cities, PopulationComparer<string, int, int, int, int, int> 6)

// Display array in sorted order.
printfn "Sorted by population in 2000:"
for city in cities do
    printfn $"{city}"
// The example displays the following output:
//    In unsorted order:
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
//    
//    Sorted by population in 1970:
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    
//    Sorted by population in 2000:
//    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
//    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
//    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
Imports System.Collections
Imports System.Collections.Generic

Public Class PopulationComparer(Of T1, T2, T3, T4, T5, T6) : Implements IComparer
   Private itemPosition As Integer
   Private multiplier As Integer = -1
      
   Public Sub New(component As Integer)
      Me.New(component, True)
   End Sub
   
   Public Sub New(component As Integer, descending As Boolean)
      If Not descending Then multiplier = 1
      
      If component <= 0 Or component > 6 Then 
         Throw New ArgumentException("The component argument is out of range.")
      End If
      itemPosition = component
   End Sub 
   
   Public Function Compare(x As Object, y As Object) As Integer _
                   Implements IComparer.Compare
 
      Dim tX = TryCast(x, Tuple(Of T1, T2, T3, T4, T5, T6))
      If tX Is Nothing Then
         Return 0
      Else
         Dim tY = DirectCast(y, Tuple(Of T1, T2, T3, T4, T5, T6))
         Select Case itemPosition
            Case 1
               Return Comparer(Of T1).Default.Compare(tX.Item1, tY.Item1) * multiplier
            Case 2
               Return Comparer(Of T2).Default.Compare(tX.Item2, tY.Item2) * multiplier
            Case 3
               Return Comparer(Of T3).Default.Compare(tX.Item3, tY.Item3) * multiplier
            Case 4
               Return Comparer(Of T4).Default.Compare(tX.Item4, tY.Item4) * multiplier
            Case 5
               Return Comparer(Of T5).Default.Compare(tX.Item5, tY.Item5) * multiplier
            Case 6
               Return Comparer(Of T6).Default.Compare(tX.Item6, tY.Item6) * multiplier
            ' This should never happen.
            Case Else
               Return 0
         End Select      
      End If
   End Function
End Class

Module Example
   Public Sub Main()
      ' Create array of sextuple with population data for three U.S. 
      ' cities, 1960-2000.
      Dim cities() = 
          { Tuple.Create("Los Angeles", 2479015, 2816061, 2966850, 3485398, 3694820),
            Tuple.Create("New York", 7781984, 7894862, 7071639, 7322564, 8008278),  
            Tuple.Create("Chicago", 3550904, 3366957, 3005072, 2783726, 2896016) } 
      
      ' Display array in unsorted order.
      Console.WriteLine("In unsorted order:")
      For Each city In cities
         Console.WriteLine(city.ToString())
      Next
      Console.WriteLine()
      
      Array.Sort(cities, New PopulationComparer(Of String, Integer, Integer, Integer, Integer, Integer)(3)) 
                           
      ' Display array in sorted order.
      Console.WriteLine("Sorted by population in 1970:")
      For Each city In cities
         Console.WriteLine(city.ToString())
      Next
      Console.WriteLine()
      
      Array.Sort(cities, New PopulationComparer(Of String, Integer, Integer, Integer, Integer, Integer)(6))
                           
      ' Display array in sorted order.
      Console.WriteLine("Sorted by population in 2000:")
      For Each city In cities
         Console.WriteLine(city.ToString())
      Next
   End Sub
End Module
' The example displays the following output:
'    In unsorted order:
'    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
'    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
'    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
'    
'    Sorted by population in 1970:
'    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
'    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)
'    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
'    
'    Sorted by population in 2000:
'    (New York, 7781984, 7894862, 7071639, 7322564, 8008278)
'    (Los Angeles, 2479015, 2816061, 2966850, 3485398, 3694820)
'    (Chicago, 3550904, 3366957, 3005072, 2783726, 2896016)

Remarks

This member is an explicit interface member implementation. It can be used only when the Tuple<T1,T2,T3,T4,T5,T6> instance is cast to an IStructuralComparable interface.

This method lets you define customized comparisons of Tuple<T1,T2,T3,T4,T5,T6> objects. For example, you can use this method to order Tuple<T1,T2,T3,T4,T5,T6> objects based on the value of a specific component.

Although this method can be called directly, it is most commonly called by collection-sorting methods that include IComparer parameters to order the members of a collection. For example, it is called by the Array.Sort(Array, IComparer) method and the Add method of a SortedList object that is instantiated by using the SortedList.SortedList(IComparer) constructor.

Caution

The IStructuralComparable.CompareTo method is intended for use in sorting operations. It should not be used when the primary purpose of a comparison is to determine whether two objects are equal. To determine whether two objects are equal, call the IStructuralEquatable.Equals(Object, IEqualityComparer) method.

Applies to