Penting
Anda harus menjadi bagian dari program pratinjau Frontier untuk mendapatkan akses awal ke Microsoft Agent 365. Frontier menghubungkan Anda langsung dengan inovasi AI terbaru Microsoft. Pratinjau frontier tunduk pada ketentuan pratinjau yang ada dari perjanjian pelanggan Anda. Karena fitur-fitur ini masih dalam pengembangan, ketersediaan dan kemampuannya dapat berubah dari waktu ke waktu.
Untuk berpartisipasi dalam ekosistem Agen 365, Anda harus menambahkan kemampuan Observabilitas Agen 365 ke agen Anda. Observabilitas Agent 365 dibangun di OpenTelemetry (OTel) dan menyediakan kerangka kerja terpadu untuk menangkap telemetri secara konsisten dan aman di semua platform agen. Dengan menerapkan komponen yang diperlukan ini, Anda mengaktifkan admin TI untuk memantau aktivitas agen Anda di Microsoft Admin Center (MAC) dan memungkinkan tim keamanan menggunakan Defender dan Purview untuk kepatuhan dan deteksi ancaman.
Manfaat utama
-
Visibilitas End-to-End: Menangkap telemetri komprehensif untuk setiap pemanggilan agen, termasuk sesi, panggilan alat, dan pengecualian, memberi Anda keterlacakan penuh di seluruh platform.
-
Pengaktifan Keamanan & Kepatuhan: Memberi umpan log audit terpadu ke Defender dan Purview, memungkinkan skenario keamanan tingkat lanjut dan pelaporan kepatuhan untuk agen Anda.
-
Fleksibilitas Lintas Platform: Membangun standar OTel dan mendukung berbagai runtime dan platform seperti Copilot Studio, Foundry, dan kerangka kerja agen di masa mendatang.
-
Efisiensi Operasional untuk Admin: Memberikan pengamatan terpusat di MAC, mengurangi waktu pemecahan masalah dan meningkatkan tata kelola dengan kontrol akses berbasis peran untuk tim TI yang mengelola agen Anda.
Penginstalan
Gunakan perintah ini untuk menginstal modul pengamatan untuk bahasa yang didukung oleh Agen 365.
pip install microsoft-agents-a365-observability-core
pip install microsoft-agents-a365-runtime
npm install @microsoft/agents-a365-observability
npm install @microsoft/agents-a365-runtime
dotnet add package Microsoft.Agents.A365.Observability
dotnet add package Microsoft.Agents.A365.Observability.Runtime
Konfigurasi
Variabel lingkungan yang diperlukan untuk pengamatan adalah:
| Variabel Lingkungan |
KETERANGAN |
ENABLE_OBSERVABILITY=true |
Bendera untuk mengaktifkan/menonaktifkan pelacakan. Secara default: |
ENABLE_A365_OBSERVABILITY_EXPORTER=true |
True mengekspor log ke layanan kami. Jika tidak, kembali ke pengekspor konsol |
from microsoft_agents_a365.observability.core import config
def token_resolver(agent_id: str, tenant_id: str) -> str | None:
# Implement secure token retrieval here
return "Bearer <token>"
config.configure(
service_name="my-agent-service",
service_namespace="my.namespace",
token_resolver=token_resolver,
)
Kecualikan pemecah masalah token untuk masuk ke konsol.
Variabel lingkungan yang diperlukan untuk pengamatan adalah:
| Variabel Lingkungan |
KETERANGAN |
ENABLE_OBSERVABILITY=true |
Bendera untuk mengaktifkan/menonaktifkan pelacakan. Secara default: |
ENABLE_A365_OBSERVABILITY_EXPORTER=true |
True mengekspor log ke layanan kami. Jika tidak, kembali ke pengekspor konsol |
import { ObservabilityManager } from '@microsoft/agents-a365-observability';
const tokenResolver = (agentId, tenantId) => {
// Your token resolution logic here
return "your-token";
};
// Advanced configuration with builder pattern
const builder = ObservabilityManager.configure(builder =>
builder
.withService('my-agent-service', '1.0.0')
.withTokenResolver((agentId, tenantId) => {
return tokenResolver(agentId, tenantId);
})
);
builder.start();
Konfigurasikan true di appsettings.json
Di Program.cs, tambahkan Agent365ExporterOptions ke koleksi layanan. Perubahan ini mengonfigurasi delegasi yang digunakan eksportir pelacakan untuk mengambil token.
Tambahkan dependensi terkait pengamatan menggunakan AddA365Tracing().
using Microsoft.Agents.A365.Observability.Runtime;
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton(sp =>
{
return new Agent365ExporterOptions
{
ClusterCategory = "prod",
TokenResolver = async (agentId, tenantId) =>
{
// It's recommended to implement caching in your token provider for performance.
var token = await tokenProvider.GetObservabilityTokenAsync(agentId, tenantId);
return token;
}
};
});
builder.AddA365Tracing();
Atribut gambar
Gunakan BaggageBuilder untuk mengatur informasi kontekstual yang mengalir melalui semua rentang dalam permintaan.
SDK mengimplementasikan SpanProcessor salinan semua entri bagasi yang tidak ada ke rentang yang baru dimulai tanpa menimpa atribut yang ada.
from microsoft_agents_a365.observability.core.middleware.baggage_builder import BaggageBuilder
with (
BaggageBuilder()
.tenant_id("tenant-123")
.agent_id("agent-456")
.correlation_id("corr-789")
.build()
):
# Any spans started in this context will receive these as attributes
pass
import { BaggageBuilder } from '@microsoft/agents-a365-observability';
// Create and apply baggage context
using baggageScope = new BaggageBuilder()
// Core identifiers
.tenantId('tenant-123')
.agentId('agent-456')
.correlationId('correlation-789')
.build();
// Execute operations within the baggage context
baggageScope.run(() => {
// All spans created within this context will inherit the baggage values
// Invoke another agent
using agentScope = InvokeAgentScope.start(invokeDetails, agentDetails, tenantDetails);
// ... agent logic
// Execute tools
using toolScope = ExecuteToolScope.start(toolDetails, agentDetails, tenantDetails);
// ... tool logic
});
using var baggageScope = new BaggageBuilder()
.TenantId('tenant-123')
.AgentId('agent-456')
.CorrelationId('correlation-789')
.Build();
// Any spans started in this context will receive them as attributes.
Pemecah Masalah Token
Saat menggunakan pengekspor Agen 365, Anda harus menyediakan fungsi pemecah masalah token yang mengembalikan token autentikasi.
Saat menggunakan Agent 365 Observability SDK dengan kerangka kerja Agent Hosting, Anda dapat menghasilkan token menggunakan TurnContext dari aktivitas agen
from microsoft_agents.activity import load_configuration_from_env
from microsoft_agents.authentication.msal import MsalConnectionManager
from microsoft_agents.hosting.aiohttp import CloudAdapter
from microsoft_agents.hosting.core import (
AgentApplication,
Authorization,
MemoryStorage,
TurnContext,
TurnState,
)
from microsoft_agents_a365.runtime.environment_utils import (
get_observability_authentication_scope,
)
agents_sdk_config = load_configuration_from_env(environ)
STORAGE = MemoryStorage()
CONNECTION_MANAGER = MsalConnectionManager(**agents_sdk_config)
ADAPTER = CloudAdapter(connection_manager=CONNECTION_MANAGER)
ADAPTER.use(TranscriptLoggerMiddleware(ConsoleTranscriptLogger()))
AUTHORIZATION = Authorization(STORAGE, CONNECTION_MANAGER, **agents_sdk_config)
AGENT_APP = AgentApplication[TurnState](
storage=STORAGE, adapter=ADAPTER, authorization=AUTHORIZATION, **agents_sdk_config
)
@AGENT_APP.activity("message", auth_handlers=["AGENTIC"])
async def on_message(context: TurnContext, _state: TurnState):
aau_auth_token = await AGENT_APP.auth.exchange_token(
context,
scopes=get_observability_authentication_scope(),
auth_handler_id="AGENTIC",
)
# cache this auth token and return via token resolver
import {
TurnState,
AgentApplication,
MemoryStorage,
TurnContext,
} from '@microsoft/agents-hosting';
import { Activity, ActivityTypes } from '@microsoft/agents-activity';
import { getObservabilityAuthenticationScope } from '@microsoft/agents-a365-runtime';
interface ConversationState {
count: number;
}
type ApplicationTurnState = TurnState<ConversationState>;
const downloader = new AttachmentDownloader();
const storage = new MemoryStorage();
export const agentApplication = new AgentApplication<ApplicationTurnState>({
authorization: {
agentic: { } // We have the type and scopes set in the .env file
},
storage,
});
agentApplication.onActivity(
ActivityTypes.Message,
async (context: TurnContext, state: ApplicationTurnState) => {
const aauAuthToken = await agentApplication.authorization.exchangeToken(context,'agentic', {
scopes: getObservabilityAuthenticationScope()
} )
// cache this auth token and return via token resolver
};
Tambahkan pemecah masalah token agenik ke koleksi layanan Anda.
using Microsoft.Agents.A365.Observability;
builder.Services.AddAgenticTracingExporter();
Dalam aplikasi agen, daftarkan token.
using Microsoft.Agents.Builder;
using Microsoft.Agents.Core.Models;
using Microsoft.Extensions.Logging;
using Microsoft.Agents.A365.Observability.Caching;
using System;
using System.Threading.Tasks;
public class MyAgent : AgentApplication
{
private readonly IExporterTokenCache<AgenticTokenStruct> _agentTokenCache;
private readonly ILogger<MyAgent> _logger;
public MyAgent(AgentApplicationOptions options, IExporterTokenCache<AgenticTokenStruct> agentTokenCache, ILogger<MyAgent> logger)
: base(options)
{
_agentTokenCache = agentTokenCache ?? throw new ArgumentNullException(nameof(agentTokenCache));
_logger = logger ?? throw new ArgumentNullException(nameof(logger));
}
protected async Task MessageActivityAsync(ITurnContext turnContext, ITurnState turnState, CancellationToken cancellationToken)
{
using var baggageScope = new BaggageBuilder()
.TenantId(turnContext.Activity.Recipient.TenantId)
.AgentId(turnContext.Activity.Recipient.AgenticAppId)
.Build();
try
{
_agentTokenCache.RegisterObservability(
turnContext.Activity.Recipient.AgenticAppId,
turnContext.Activity.Recipient.TenantId,
new AgenticTokenStruct
{
UserAuthorization = UserAuthorization,
TurnContext = turnContext
},
EnvironmentUtils.GetObservabilityAuthenticationScope()
);
}
catch (Exception ex)
{
_logger.LogWarning($"Error registering for observability: {ex.Message}");
}
}
}
Instrumentasi Otomatis:
Instrumentasi otomatis secara otomatis mendengarkan sinyal telemetri yang ada kerangka kerja agenik (SDK) untuk pelacakan dan meneruskannya ke layanan observabilitas Agen 365. Ini menghilangkan kebutuhan pengembang untuk menulis kode pemantauan secara manual, menyederhanakan penyiapan, dan memastikan pelacakan performa yang konsisten.
Instrumentasi otomatis didukung di beberapa SDK dan platform:
Catatan
Dukungan untuk instrumentasi otomatis bervariasi menurut platform dan implementasi SDK.
Kernel Semantik
Instrumentasi otomatis memerlukan penggunaan pembuat bagasi. Atur ID agen dan ID penyewa menggunakan BaggageBuilder.
Menginstal paket DGSS
pip install microsoft-agents-a365-observability-extensions-semantic-kernel
Mengonfigurasi pengamatan
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.semantic_kernel import SemanticKernelInstrumentor
# Configure observability
configure(
service_name="my-semantic-kernel-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
instrumentor = SemanticKernelInstrumentor()
instrumentor.instrument()
# Your Semantic Kernel code is now automatically traced
Kernel Semantik tidak didukung dengan JavaScript.
Tambahkan dependensi ke kumpulan layanan.
using Microsoft.Agents.A365.Observability.Extensions.SemanticKernel;
builder.Services.AddTracing(config => config.WithSemanticKernel());
Atur AgentId dan TenantId gunakan BaggageBuilder. Pastikan BAHWA ID yang digunakan saat membuat cocok dengan ChatCompletionAgent ID agen yang diteruskan ke BaggageBuilder.
using Microsoft.Agents.A365.Observability.Extensions.SemanticKernel;
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
var chatCompletionAgent = new ChatCompletionAgent
{
// NOTE: This will be the agent ID with which the TokenResolver delegate is invoked. Should match above.
Id = <your-agent-id>,
...
};
}
}
OpenAI
Instrumentasi otomatis memerlukan penggunaan pembuat bagasi. Atur ID agen dan ID penyewa menggunakan BaggageBuilder.
Menginstal paket DGSS
pip install microsoft-agents-a365-observability-extensions-openai
Mengonfigurasi pengamatan.
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.openai_agents import OpenAIAgentsTraceInstrumentor
# Configure observability
configure(
service_name="my-openai-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
instrumentor = OpenAIAgentsTraceInstrumentor()
instrumentor.instrument()
# Your OpenAI Agents code is now automatically traced
Menginstal paket DGSS
npm install @microsoft/agents-a365-observability-extensions-openai
Mengonfigurasi pengamatan
import { ObservabilityManager } from '@microsoft/agents-a365-observability';
import { OpenAIAgentsTraceInstrumentor } from '@microsoft/agents-a365-observability-extensions-openai';
// Configure observability first
const sdk = ObservabilityManager.configure((builder) =>
builder
.withService('My Agent Service', '1.0.0')
.withConsoleExporter(true)
);
// Create and enable the instrumentor
const instrumentor = new OpenAIAgentsTraceInstrumentor({
enabled: true,
tracerName: 'openai-agents-tracer',
tracerVersion: '1.0.0'
});
sdk.start();
instrumentor.enable();
Tambahkan dependensi ke kumpulan layanan.
using Microsoft.Agents.A365.Observability.Extensions.OpenAI;
builder.Services.AddTracing(config => config.WithOpenAI());
Atur AgentId dan TenantId gunakan BaggageBuilder. Untuk panggilan alat, mulai pelacakan menggunakan Trace() pada ChatToolCall instans.
using Microsoft.Agents.A365.Observability.Extensions.OpenAI;
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
// NOTE: This will be the agent and tenant ID with which the TokenResolver delegate will be invoked.
using var scope = chatToolCall.Trace(agentId: <your-agent-id>, <your-tenant-id>);
}
}
Kerangka Kerja Agen
Instrumentasi otomatis memerlukan penggunaan pembuat bagasi. Atur ID agen dan ID penyewa menggunakan BaggageBuilder.
Menginstal paket DGSS
pip install microsoft-agents-a365-observability-extensions-agent-framework
Mengonfigurasi pengamatan
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.agentframework.trace_instrumentor import (
AgentFrameworkInstrumentor,
)
# Configure observability
configure(
service_name="AgentFrameworkTracingWithAzureOpenAI",
service_namespace="AgentFrameworkTesting",
)
# Enable auto-instrumentation
AgentFrameworkInstrumentor().instrument()
Kerangka Kerja Agen tidak didukung dengan JavaScript.
Tambahkan dependensi ke kumpulan layanan.
using Microsoft.Agents.A365.Observability.Extensions.AgentFramework;
builder.Services.AddTracing(config => config.WithAgentFramework());
Atur AgentId dan TenantId gunakan BaggageBuilder.
using Microsoft.Agents.A365.Observability.Runtime.Common;
public class MyAgent : AgentApplication
{
protected async Task MessageActivityAsync(ITurnContext turnContext, ITurnState turnState, CancellationToken cancellationToken)
{
using var baggageScope = new BaggageBuilder()
.AgentId(<your-agent-id>) // NOTE: This will be the agent ID with which the TokenResolver delegate is invoked.
.TenantId(<your-tenant-id>) // NOTE: This will be the tenant ID with which the TokenResolver delegate is invoked.
.Build();
}
}
Kerangka Kerja LangChain
Instrumentasi otomatis memerlukan penggunaan pembangun bagasi. Atur ID agen dan ID penyewa menggunakan BaggageBuilder.
Menginstal paket DGSS
pip install microsoft-agents-a365-observability-extensions-langchain
Mengonfigurasi pengamatan
from microsoft_agents_a365.observability.core.config import configure
from microsoft_agents_a365.observability.extensions.langchain import CustomLangChainInstrumentor
# Configure observability
configure(
service_name="my-langchain-agent",
service_namespace="ai.agents"
)
# Enable auto-instrumentation
CustomLangChainInstrumentor()
# Your LangChain code is now automatically traced
Instrumentasi Manual
SDK observabilitas Agen 365 dapat digunakan untuk memahami pekerjaan internal agen.
SDK menyediakan tiga cakupan yang dapat dimulai: InvokeAgentScope, ExecuteToolScope, dan InferenceScope.
Pemanggilan Agen
Cakupan ini harus digunakan pada awal proses agen Anda. Dengan memanggil cakupan agen, Anda mengambil properti seperti agen saat ini yang dipanggil, data pengguna agen, dll.
from microsoft_agents_a365.observability.core.invoke_agent_scope import InvokeAgentScope
from microsoft_agents_a365.observability.core.invoke_agent_details import InvokeAgentDetails
from microsoft_agents_a365.observability.core.tenant_details import TenantDetails
from microsoft_agents_a365.observability.core.request import Request
invoke_details = InvokeAgentDetails(
details=agent_details, # AgentDetails instance
endpoint=my_endpoint, # Optional endpoint (with hostname/port)
session_id="session-42"
)
tenant_details = TenantDetails(tenant_id="tenant-123")
req = Request(content="User asks a question")
with InvokeAgentScope.start(invoke_details, tenant_details, req):
# Perform agent invocation logic
response = call_agent(...)
import {
InvokeAgentScope,
ExecutionType,
CallerDetails,
EnhancedAgentDetails
} from '@microsoft/agents-a365-observability';
// Basic agent invocation details
const invokeDetails = {
agentId: 'email-agent-123',
agentName: 'Email Assistant',
...
}
};
const tenantDetails = {
tenantId: 'tenant-789'
};
// Optional: Caller details (human user)
const callerDetails: CallerDetails = {};
// Optional: Caller agent details (for agent-to-agent calls)
const callerAgentDetails: EnhancedAgentDetails = {};
// Enhanced invocation with caller context
using scope = InvokeAgentScope.start(
invokeDetails,
tenantDetails,
callerAgentDetails,
callerDetails
);
try {
// Record input messages
scope.recordInputMessages(['Please help me organize my emails', 'Focus on urgent items']);
// Your agent invocation logic here
const response = await invokeAgent(invokeDetails.request.content);
// Record output messages
scope.recordOutputMessages(['I found 15 urgent emails', 'Here is your organized inbox']);
} catch (error) {
scope.recordError(error as Error);
throw error;
}
// Scope automatically disposed at end of using block
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyAgent
{
public async Task<AgentResponse> ProcessUserRequest(string userInput)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "MyAgent",
agentDescription: "Handles user requests.",
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var request = new Request(
content: userInput,
executionType: ExecutionType.HumanToAgent,
sessionId: "session-abc",
channelMetadata: new ChannelMetadata("webchat", "https://webchat.contoso.com")
);
var callerDetails = new CallerDetails(
callerId: "user-123",
callerName: "Jane Doe",
callerUpn: "jane.doe@contoso.com",
callerUserId: "user-uuid-456",
tenantId: "tenant-789"
);
var endpoint = new Uri("https://myagent.contoso.com");
var invokeAgentDetails = new InvokeAgentDetails(endpoint, agentDetails, sessionId: "session-abc");
var conversationId = "conv-xyz";
// Start the scope
using var scope = InvokeAgentScope.Start(
invokeAgentDetails: invokeAgentDetails,
tenantDetails: tenantDetails,
request: request,
callerAgentDetails: null,
callerDetails: callerDetails,
conversationId: conversationId
);
// Record input messages
scope.RecordInputMessages(new[] { userInput });
// ... your agent logic here ...
// Simulate agent processing and output
var output = $"Processed: {userInput}";
scope.RecordOutputMessages(new[] { output });
// Optionally record a single response
scope.RecordResponse(output);
return new AgentResponse { Content = output };
}
}
public class AgentResponse
{
public string Content { get; set; }
}
Contoh berikut menunjukkan cara melengkapi eksekusi alat agen Anda dengan pelacakan pengamatan untuk menangkap telemetri untuk tujuan pemantauan dan audit.
from microsoft_agents_a365.observability.core.execute_tool_scope import ExecuteToolScope
from microsoft_agents_a365.observability.core.tool_call_details import ToolCallDetails
tool_details = ToolCallDetails(
tool_name="summarize",
tool_type="function",
tool_call_id="tc-001",
arguments="{'text': '...'}",
description="Summarize provided text",
endpoint=None # or endpoint object with hostname/port
)
with ExecuteToolScope.start(tool_details, agent_details, tenant_details):
result = run_tool(tool_details)
import { ExecuteToolScope } from '@microsoft/agents-a365-observability';
const toolDetails = {
toolName: 'email-search',
arguments: JSON.stringify({ query: 'from:boss@company.com', limit: 10 }),
toolCallId: 'tool-call-456',
description: 'Search emails by criteria',
toolType: 'function',
endpoint: {
host: 'tools.contoso.com',
port: 8080, // Will be recorded since not 443
protocol: 'https'
}
};
using scope = ExecuteToolScope.start(toolDetails, agentDetails, tenantDetails);
try {
// Execute the tool
const result = await searchEmails(toolDetails.arguments);
// Record the tool execution result
scope.recordResponse(JSON.stringify(result));
return result;
} catch (error) {
scope.recordError(error as Error);
throw error;
}
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyToolAgent
{
public async Task<ToolResult> ExecuteTool(string toolName, object parameters)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "ToolAgent",
agentDescription: "Executes tools for users.",
agentAUID: "tool-auid-123",
agentUPN: "toolagent@contoso.com",
agentBlueprintId: "tool-blueprint-456",
agentType: AgentType.EntraEmbodied,
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var endpoint = new Uri("https://toolagent.contoso.com:8443");
var toolCallDetails = new ToolCallDetails(
toolName: toolName,
arguments: System.Text.Json.JsonSerializer.Serialize(parameters),
toolCallId: Guid.NewGuid().ToString(),
description: "Runs a tool operation.",
toolType: "custom-type",
endpoint: endpoint
);
// Start the scope
using var scope = ExecuteToolScope.Start(
toolCallDetails: toolCallDetails,
agentDetails: agentDetails,
tenantDetails: tenantDetails
);
// ... your tool logic here ...
// Record response
var toolOutput = $"Tool '{toolName}' processed with parameters: {System.Text.Json.JsonSerializer.Serialize(parameters)}";
scope.RecordResponse(toolOutput);
return new ToolResult { Output = toolOutput };
}
}
public class ToolResult
{
public string Output { get; set; }
}
Inferensi
Contoh berikut menunjukkan cara melengkapi panggilan inferensi model AI dengan pelacakan pengamatan untuk menangkap penggunaan token, detail model, dan metadata respons.
from microsoft_agents_a365.observability.core.inference_scope import InferenceScope
from microsoft_agents_a365.observability.core.inference_call_details import InferenceCallDetails
from microsoft_agents_a365.observability.core.request import Request
inference_details = InferenceCallDetails(
operationName=SomeEnumOrValue("chat"),
model="gpt-4o-mini",
providerName="azure-openai",
inputTokens=123,
outputTokens=456,
finishReasons=["stop"],
responseId="resp-987"
)
req = Request(content="Explain quantum computing simply.")
with InferenceScope.start(inference_details, agent_details, tenant_details, req):
completion = call_llm(...)
import { InferenceScope, InferenceOperationType } from '@microsoft/agents-a365-observability';
const inferenceDetails = {
operationName: InferenceOperationType.CHAT,
model: 'gpt-4',
providerName: 'openai',
inputTokens: 150,
outputTokens: 75,
finishReasons: ['stop'],
responseId: 'resp-123456'
};
using scope = InferenceScope.start(inferenceDetails, agentDetails, tenantDetails);
try {
// Record input messages
scope.recordInputMessages(['Summarize the following emails for me...']);
// Call the LLM
const response = await callLLM();
// Record detailed telemetry with granular methods
scope.recordOutputMessages(['Here is your email summary...']);
scope.recordInputTokens(145); // Update if different from constructor
scope.recordOutputTokens(82); // Update if different from constructor
scope.recordResponseId('resp-789123');
scope.recordFinishReasons(['stop', 'max_tokens']);
return response.text;
} catch (error) {
scope.recordError(error as Error);
throw error;
}
using System;
using System.Threading.Tasks;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Contracts;
using Microsoft.Agents.A365.Observability.Runtime.Tracing.Scopes;
public class MyInferenceAgent
{
public async Task<InferenceResult> RunInference(string input)
{
var agentDetails = new AgentDetails(
agentId: Guid.NewGuid().ToString(),
agentName: "InferenceAgent",
agentDescription: "Performs generative AI inference.",
agentAUID: "inference-auid-123",
agentUPN: "inferenceagent@contoso.com",
agentBlueprintId: "inference-blueprint-456",
agentType: AgentType.EntraEmbodied,
tenantId: "tenant-789"
);
var tenantDetails = new TenantDetails(Guid.Parse("11111111-2222-3333-4444-555555555555"));
var inferenceDetails = new InferenceCallDetails(
operationName: InferenceOperationType.Chat,
model: "gpt-4",
providerName: "OpenAI",
inputTokens: 42,
outputTokens: 84,
finishReasons: new[] { "stop", "length" },
responseId: "response-xyz"
);
// Start the scope
using var scope = InferenceScope.Start(
details: inferenceDetails,
agentDetails: agentDetails,
tenantDetails: tenantDetails
);
// ... your inference logic here ...
// Record input/output messages and other telemetry
scope.RecordInputMessages(new[] { input, "additional context" });
scope.RecordOutputMessages(new[] { "AI response message" });
scope.RecordInputTokens(42);
scope.RecordOutputTokens(84);
scope.RecordResponseId("response-xyz");
scope.RecordFinishReasons(new[] { "stop", "length" });
scope.RecordThoughtProcess("Reasoning step 1; step 2");
return new InferenceResult { Output = "AI response message" };
}
}
public class InferenceResult
{
public string Output { get; set; }
}
Memvalidasi Secara Lokal
Atur variabel lingkungan/ Ini mengekspor rentang (jejak) ke konsol.
Atur variabel lingkungan/ Ini mengekspor rentang (jejak) ke konsol.
Konfigurasikan false di appsettings.json Ini mengekspor rentang (jejak) ke konsol.
Menguji agen Anda dengan pengamatan
Setelah menerapkan pengamatan di agen Anda, uji untuk memastikan telemetri ditangkap dengan benar.
Ikuti panduan pengujian untuk menyiapkan lingkungan Anda, lalu fokus terutama pada bagian Lihat log pengamatan untuk memvalidasi implementasi pengamatan Anda berfungsi seperti yang diharapkan.