Breyta

Deila með


RNGCryptoServiceProvider.GetBytes Method

Definition

Overloads

GetBytes(Byte[])

Fills an array of bytes with a cryptographically strong sequence of random values.

GetBytes(Span<Byte>)

Fills a span with cryptographically strong random bytes.

GetBytes(Byte[], Int32, Int32)

Fills the specified byte array with a cryptographically strong random sequence of values starting at a specified index for a specified number of bytes.

GetBytes(Byte[])

Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs

Fills an array of bytes with a cryptographically strong sequence of random values.

public:
 override void GetBytes(cli::array <System::Byte> ^ data);
public override void GetBytes (byte[] data);
override this.GetBytes : byte[] -> unit
Public Overrides Sub GetBytes (data As Byte())

Parameters

data
Byte[]

The array to fill with a cryptographically strong sequence of random values.

Exceptions

The cryptographic service provider (CSP) cannot be acquired.

data is null.

Examples

The following code example shows how to create a random number with the RNGCryptoServiceProvider class.

//The following sample uses the Cryptography class to simulate the roll of a dice.

using namespace System;
using namespace System::IO;
using namespace System::Text;
using namespace System::Security::Cryptography;

ref class RNGCSP
{
public:
    // Main method.
    static void Main()
    {
        const int totalRolls = 25000;
        array<int>^ results = gcnew array<int>(6);

        // Roll the dice 25000 times and display
        // the results to the console.
        for (int x = 0; x < totalRolls; x++)
        {
            Byte roll = RollDice((Byte)results->Length);
            results[roll - 1]++;
        }
        for (int i = 0; i < results->Length; ++i)
        {
            Console::WriteLine("{0}: {1} ({2:p1})", i + 1, results[i], (double)results[i] / (double)totalRolls);
        }
    }

    // This method simulates a roll of the dice. The input parameter is the
    // number of sides of the dice.

    static Byte RollDice(Byte numberSides)
    {
        if (numberSides <= 0)
            throw gcnew ArgumentOutOfRangeException("numberSides");
        // Create a new instance of the RNGCryptoServiceProvider.
        RNGCryptoServiceProvider^ rngCsp = gcnew RNGCryptoServiceProvider();
        // Create a byte array to hold the random value.
        array<Byte>^ randomNumber = gcnew array<Byte>(1);
        do
        {
            // Fill the array with a random value.
            rngCsp->GetBytes(randomNumber);
        }
        while (!IsFairRoll(randomNumber[0], numberSides));
        // Return the random number mod the number
        // of sides.  The possible values are zero-
        // based, so we add one.
        return (Byte)((randomNumber[0] % numberSides) + 1);
    }

private:
    static bool IsFairRoll(Byte roll, Byte numSides)
    {
        // There are MaxValue / numSides full sets of numbers that can come up
        // in a single byte.  For instance, if we have a 6 sided die, there are
        // 42 full sets of 1-6 that come up.  The 43rd set is incomplete.
        int fullSetsOfValues = Byte::MaxValue / numSides;

        // If the roll is within this range of fair values, then we let it continue.
        // In the 6 sided die case, a roll between 0 and 251 is allowed.  (We use
        // < rather than <= since the = portion allows through an extra 0 value).
        // 252 through 255 would provide an extra 0, 1, 2, 3 so they are not fair
        // to use.
        return roll < numSides * fullSetsOfValues;
    }
};

int main()
{
    RNGCSP::Main();
}
//The following sample uses the Cryptography class to simulate the roll of a dice.

using System;
using System.IO;
using System.Text;
using System.Security.Cryptography;

class RNGCSP
{
    private static RNGCryptoServiceProvider rngCsp = new RNGCryptoServiceProvider();
    // Main method.
    public static void Main()
    {
        const int totalRolls = 25000;
        int[] results = new int[6];

        // Roll the dice 25000 times and display
        // the results to the console.
        for (int x = 0; x < totalRolls; x++)
        {
            byte roll = RollDice((byte)results.Length);
            results[roll - 1]++;
        }
        for (int i = 0; i < results.Length; ++i)
        {
            Console.WriteLine("{0}: {1} ({2:p1})", i + 1, results[i], (double)results[i] / (double)totalRolls);
        }
        rngCsp.Dispose();
    }

    // This method simulates a roll of the dice. The input parameter is the
    // number of sides of the dice.

    public static byte RollDice(byte numberSides)
    {
        if (numberSides <= 0)
            throw new ArgumentOutOfRangeException("numberSides");

        // Create a byte array to hold the random value.
        byte[] randomNumber = new byte[1];
        do
        {
            // Fill the array with a random value.
            rngCsp.GetBytes(randomNumber);
        }
        while (!IsFairRoll(randomNumber[0], numberSides));
        // Return the random number mod the number
        // of sides.  The possible values are zero-
        // based, so we add one.
        return (byte)((randomNumber[0] % numberSides) + 1);
    }

    private static bool IsFairRoll(byte roll, byte numSides)
    {
        // There are MaxValue / numSides full sets of numbers that can come up
        // in a single byte.  For instance, if we have a 6 sided die, there are
        // 42 full sets of 1-6 that come up.  The 43rd set is incomplete.
        int fullSetsOfValues = Byte.MaxValue / numSides;

        // If the roll is within this range of fair values, then we let it continue.
        // In the 6 sided die case, a roll between 0 and 251 is allowed.  (We use
        // < rather than <= since the = portion allows through an extra 0 value).
        // 252 through 255 would provide an extra 0, 1, 2, 3 so they are not fair
        // to use.
        return roll < numSides * fullSetsOfValues;
    }
}
'The following sample uses the Cryptography class to simulate the roll of a dice.
Imports System.IO
Imports System.Text
Imports System.Security.Cryptography



Class RNGCSP
    Private Shared rngCsp As New RNGCryptoServiceProvider()
    ' Main method.
    Public Shared Sub Main()
        Const totalRolls As Integer = 25000
        Dim results(5) As Integer

        ' Roll the dice 25000 times and display
        ' the results to the console.
        Dim x As Integer
        For x = 0 To totalRolls
            Dim roll As Byte = RollDice(System.Convert.ToByte(results.Length))
            results((roll - 1)) += 1
        Next x
        Dim i As Integer

        While i < results.Length
            Console.WriteLine("{0}: {1} ({2:p1})", i + 1, results(i), System.Convert.ToDouble(results(i)) / System.Convert.ToDouble(totalRolls))
            i += 1
        End While
        rngCsp.Dispose()
    End Sub


    ' This method simulates a roll of the dice. The input parameter is the
    ' number of sides of the dice.
    Public Shared Function RollDice(ByVal numberSides As Byte) As Byte
        If numberSides <= 0 Then
            Throw New ArgumentOutOfRangeException("NumSides")
        End If 
        ' Create a byte array to hold the random value.
        Dim randomNumber(0) As Byte
        Do
            ' Fill the array with a random value.
            rngCsp.GetBytes(randomNumber)
        Loop While Not IsFairRoll(randomNumber(0), numberSides)
        ' Return the random number mod the number
        ' of sides.  The possible values are zero-
        ' based, so we add one.
        Return System.Convert.ToByte(randomNumber(0) Mod numberSides + 1)

    End Function


    Private Shared Function IsFairRoll(ByVal roll As Byte, ByVal numSides As Byte) As Boolean
        ' There are MaxValue / numSides full sets of numbers that can come up
        ' in a single byte.  For instance, if we have a 6 sided die, there are
        ' 42 full sets of 1-6 that come up.  The 43rd set is incomplete.
        Dim fullSetsOfValues As Integer = [Byte].MaxValue / numSides

        ' If the roll is within this range of fair values, then we let it continue.
        ' In the 6 sided die case, a roll between 0 and 251 is allowed.  (We use
        ' < rather than <= since the = portion allows through an extra 0 value).
        ' 252 through 255 would provide an extra 0, 1, 2, 3 so they are not fair
        ' to use.
        Return roll < numSides * fullSetsOfValues

    End Function 'IsFairRoll
End Class

Remarks

The length of the byte array determines how many cryptographically strong random bytes are produced.

This method is thread safe.

See also

Applies to

GetBytes(Span<Byte>)

Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs

Fills a span with cryptographically strong random bytes.

public:
 override void GetBytes(Span<System::Byte> data);
public override void GetBytes (Span<byte> data);
override this.GetBytes : Span<byte> -> unit
Public Overrides Sub GetBytes (data As Span(Of Byte))

Parameters

data
Span<Byte>

The span to fill with cryptographically strong random bytes.

Applies to

GetBytes(Byte[], Int32, Int32)

Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs
Source:
RNGCryptoServiceProvider.cs

Fills the specified byte array with a cryptographically strong random sequence of values starting at a specified index for a specified number of bytes.

public:
 override void GetBytes(cli::array <System::Byte> ^ data, int offset, int count);
public override void GetBytes (byte[] data, int offset, int count);
override this.GetBytes : byte[] * int * int -> unit
Public Overrides Sub GetBytes (data As Byte(), offset As Integer, count As Integer)

Parameters

data
Byte[]

The array to fill with cryptographically strong random bytes.

offset
Int32

The index of the array to start the fill operation.

count
Int32

The number of bytes to fill.

Exceptions

data is null.

offset or count is less than 0.

offset plus count exceeds the length of data.

Applies to