Condividi tramite


OlsTrainer Classe

Definizione

Oggetto IEstimator<TTransformer> per il training di un modello di regressione lineare usando i quadrati minimi ordinari (OLS) per stimare i parametri del modello di regressione lineare.

public sealed class OlsTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.OlsModelParameters>,Microsoft.ML.Trainers.OlsModelParameters>
type OlsTrainer = class
    inherit TrainerEstimatorBase<RegressionPredictionTransformer<OlsModelParameters>, OlsModelParameters>
Public NotInheritable Class OlsTrainer
Inherits TrainerEstimatorBase(Of RegressionPredictionTransformer(Of OlsModelParameters), OlsModelParameters)
Ereditarietà

Commenti

Per creare questo trainer, usare Ols o Ols(Options).

Colonne di input e output

I dati della colonna dell'etichetta di input devono essere Single. I dati delle colonne delle funzionalità di input devono essere un vettore di dimensioni note di Single.

Questo formatore restituisce le colonne seguenti:

Nome colonna di output Tipo di colonna Descrizione
Score Single Punteggio non associato stimato dal modello.

Caratteristiche del trainer

Attività di Machine Learning Regressione
È necessaria la normalizzazione?
È necessaria la memorizzazione nella cache? No
NuGet richiesto oltre a Microsoft.ML Microsoft.ML.Mkl.Components
Esportabile in ONNX

Dettagli dell'algoritmo di training

I quadrati minimi ordinari (OLS) sono un metodo di regressione con parametri. Si presuppone che la media condizionale della variabile dipendente segue una funzione lineare delle variabili dipendenti. I parametri di regressione possono essere stimati riducendo al minimo i quadrati della differenza tra i valori osservati e le stime

Controllare la sezione Vedere anche i collegamenti agli esempi di utilizzo.

Campi

FeatureColumn

Colonna di funzionalità prevista dal trainer.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Colonna etichetta prevista dal trainer. Può essere null, che indica che l'etichetta non viene usata per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Colonna di peso prevista dal trainer. Può essere null, che indica che il peso non viene usato per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Proprietà

Info

Oggetto IEstimator<TTransformer> per il training di un modello di regressione lineare usando i quadrati minimi ordinari (OLS) per stimare i parametri del modello di regressione lineare.

Metodi

Fit(IDataView)

Esegue il training e restituisce un ITransformeroggetto .

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Oggetto IEstimator<TTransformer> per il training di un modello di regressione lineare usando i quadrati minimi ordinari (OLS) per stimare i parametri del modello di regressione lineare.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Metodi di estensione

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Aggiungere un "checkpoint di memorizzazione nella cache" alla catena di stima. Ciò garantisce che gli estimatori downstream vengano sottoposti a training sui dati memorizzati nella cache. È utile avere un checkpoint di memorizzazione nella cache prima dei training che accettano più passaggi di dati.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dato un stimatore, restituire un oggetto wrapping che chiamerà un delegato una volta Fit(IDataView) chiamato. Spesso è importante che un stimatore restituisca informazioni su ciò che è stato adatto, che è il motivo per cui il Fit(IDataView) metodo restituisce un oggetto tipizzato in modo specifico, anziché solo un oggetto generale ITransformer. Tuttavia, allo stesso tempo, IEstimator<TTransformer> sono spesso formati in pipeline con molti oggetti, quindi potrebbe essere necessario creare una catena di stima tramite EstimatorChain<TLastTransformer> dove lo stimatore per cui si vuole ottenere il trasformatore è sepolto da qualche parte in questa catena. Per questo scenario, è possibile collegare questo metodo a un delegato che verrà chiamato una volta chiamato fit.

Si applica a

Vedi anche